
Constructing Advanced Web-based Dialog Components
with Stakeholders – a DSL Approach

Patrick Freudenstein and Martin Nussbaumer
Karlsruhe Institute of Technology - University of Karlsruhe (TH)

Department of Telematics, IT Management and Web Engineering Research Group,
Engesserstr. 4, 76128 Karlsruhe, Germany

{patrick.freudenstein, martin.nussbaumer}@kit.edu

Abstract

Complex dialogs with comprehensive underlying

data models are gaining increasing importance in
today’s Web applications. This in turn accelerates the
need for highly dynamic dialogs offering guidance to
the users and reducing cognitive overload. Beyond
that, requirements from the fields of Web accessibility,
platform-independence and Web service integration
arise. Considering the resulting complexity, a
systematic engineering approach becomes important.
Besides addressing the specific characteristics of these
dialogs, key success factors from a communication
perspective like strong user involvement and clear
business objectives must be taken into account. To this
end, we present an evolutionary, extensible approach
for the model-driven construction of advanced dialogs
which is based on a Domain-specific Language (DSL).
We introduce a modeling notation based on Petri net
constructs and XForms as well as a supporting Web-
based editor, both focusing on simplicity and fostering
communications. The technical framework allows for
quick prototyping and flexible changes. In conclusion,
complex, device-independent dialogs with rich
behavior and appearance can be constructed and
evolved with intense stakeholder collaboration.

1. Introduction

The World Wide Web is currently performing its
next evolution cycle towards a platform for
sophisticated enterprise applications and portals with a
high intensity and complexity of user interaction
aspects [14, 17]. Considering the significant
complexity of tasks performed within these new types
of applications as well as the comprehensive
underlying data models, highly dynamic dialogs
reducing cognitive overload and offering guidance to

the users are required. Such usability aspects have a
major influence on the efficiency and efficacy of users
[12]. Beyond that, aspects from the fields of
accessibility, platform independence, adaptivity, and
Web service communication have to be considered.
Besides these application type-specific requirements,
key factors arising from a project management
perspective have to be taken into account. To this end,
agility, strong stakeholder involvement and clear
business objectives have been identified as key success
factors [21].

This being the situation, we present the Dialog DSL
– an evolutionary, model-driven approach for the
construction of rich dialogs which meets these
requirements. The Dialog DSL is part of our research
towards the model-driven construction of workflow-
based Web applications using Domain-specific
Languages for their various aspects [6]. It is based on
our previous work, the WebComposition Service
Linking System (WSLS) approach [7] and our latest
research towards DSL-based Web Engineering [13].
By using this DSL-based approach, stakeholders and
domain experts having no experience in software
development can directly contribute to the
development effort by understanding, validating,
adapting, and even developing dialog models.
Moreover, the Dialog DSL allows for rapid iteration
cycles with running versions of the aspired dialog
being available very early. In conclusion, our DSL
approach enables an intense collaboration throughout
the development process and lowers the possibility of
misunderstandings.

Section 2 introduces a core set of requirements for a
systematic dialog engineering approach. In section 3,
an overview of the Dialog DSL is given, whereas a
detailed presentation of its core pillars follows in
section 4: The modeling notation based on Petri nets
[16] and XForms [2], a supporting Web-based model

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.39

38

editor, and the involved model transformations.
Experiences from the application of the Dialog DSL in
real-world projects are outlined in section 5. Section 6
discusses related work and section 7 concludes the
paper and presents future work.

2. Problem Scope

Based on challenges experienced in several real-
world projects as well as from general requirements for
dialog engineering methods found in literature, e.g. [9,
10], we identified the following key requirements. The
first three requirements aim at vital characteristics of
advanced dialogs a suitable engineering approach must
address, whereas the last three concern the
development process and the methodology itself.
These requirements served as starting point for the
design of our approach and will be used for the evalua-
tion of related work and the method itself (section 6).

Usability: The engineering approach should treat
dynamic behavior, user guidance and feedback, and
adaptivity as vital usability features of advanced
dialogs.

Accessibility: The accessibility of the resulting
dialogs for everyone is a key requirement [3].
Especially in business applications or in the public
sector, no potential users must be passed over.

Platform-independence: Particularly dialogs in
business-related Web applications should be accessible
not only from a desktop or notebook computer, but
also from mobile devices like PDAs.

Agility & Evolution: A dedicated dialog
engineering approach should be agile and evolution-
oriented in terms of supporting short revision
lifecycles and the efficient adoption of changes [4, 19].

Strong Stakeholder Involvement: Strongly
emphasizing stakeholder involvement and supporting
efficient and efficacious communications by focusing
on simplicity and supported by rapid prototyping [22]
is, particularly for the construction of dialogs, crucial.

Reuse: With respect to requirements from the fields
of agility, software quality, and development
efficiency, systematic reuse of all kinds of artifacts
[11] should be incorporated as a guiding principle
throughout the development process.

3. The Dialog DSL at a Glance

The Dialog DSL is part of our research in the
context of DSL-based Web Engineering [13] in
general and workflow-based Web Applications [6] in
particular. The overall goal of DSL-based Web
Engineering is to foster communication and

collaboration with stakeholders by emphasizing
simplicity. Based on the DSL-based Web Engineering
approach, Web applications are constructed by
assembling components for various concerns (e.g.
dialogs, workflows or data presentation) and
configuring them with DSL programs at runtime.
These DSL programs in turn are obtained through
transformations of visual models tailored both to
individual stakeholder groups and the problem domain.

3.1 Elements of the Dialog DSL

Domain-specific Model (DSM): The Dialog

DSL’s DSM specifies the formal schema for all
dialogs that can be designed with the DSL. A DSM
should be tailored to the problem domain, not the
solution domain, i.e. the DSM must abstract from the
final implementation. Exploring the domain of Web-
based dialogs, we identified two necessary groups of
concepts to be integrated in an appropriate DSM:
Concepts for describing interaction elements and
concepts for specifying dynamic behavior of a dialog,
so-called interaction structures.

Figure 1. Simplified excerpt from the DSL’s DSM.

Figure 1 shows an excerpt from the DSM starting
from a dialog partition, i.e. a semantically cohesive
part of a dialog, which can contain interaction
structures and interaction elements. Regarding the
latter, we chose to integrate the concepts for specifying
interaction elements from the W3C XForms standard
[2]. They are a good means for expressing interaction
elements within a DSL as they are based on high-level
user interaction primitives [18]. Thus, they separate the
expression of the intent underlying a particular form
control from its presentational and behavioral aspects.
The DSM can be extended by additional interaction
elements as indicated in the figure by the
corresponding extension point. Regarding interaction
structures, we defined an extensible core set
representing common dynamic behaviors in dialogs:
Sequence represents a wizard-like sequence of dialog

39

partitions, each of them being presented to the user one
at a time and connected via previous / next navigation
facilities, thus allowing for semantic grouping and
reducing complexity. Choice represents the dynamic
display of a dialog partition in response to a selection
made by the user. As indicated in the figure, this initial
set of interaction structures can also be extended.

Domain Interaction Model (DIM): We propose a
two-tiered modeling notation based on Petri nets and
XForms. On the first tier, the elements from the data
model are distributed on various partitions and
dynamic behavior between them using interaction
structures is modeled. Dialog partitions are represented
by Petri net places containing elements from the
dialog’s data model. Petri net transitions correspond to
the performed user interaction, i.e. changing a value in
the dialog’s data model. Interaction structures are
represented by predefined graphical Petri net
templates. On the second tier, the concrete appearance
of each partition employing interaction elements is
specified. This two-tiered modeling approach fosters
reuse and allows for separation of concerns - thus
again putting emphasis on simplicity.

Solution Building Block (SBB): A SBB is a
dedicated software component being capable of
executing DSL programs by adapting its behavior
accordingly. The Dialog SBB runs on the WSLS
framework [7] and represents the core of the technical
platform. It communicates with a Dialog Web Service
for initiating the generation of raw dialog models
based on a XML Schema definition or for reusing
dialog models. In each case, a running dialog is
obtained without any manual modeling. Moreover, the
SBB links to a Web-based editor for creating and
adapting dialogs at runtime, i.e. no (re)compilation or
(re)deployment is required. Finally, the SBB identifies
requesting user agents at runtime based on the HTTP
user agent string or by evaluating User Agent Profile
(UAProf) information [15], performs corresponding
dialog adaptations as well as ultimately transforms
dialog models into executable markup, e.g. XForms.
Submissions of the dialog model in whole or part are
received by the SBB and processed, e.g. in the context
of a workflow, or forwarded to a Web service the
dialog communicates with. In the latter case, the SBB
receives the response from the Web service and
forwards it to the corresponding client.

3.2 The Dialog DSL Process Model

The Dialog DSL’s associated process model for the

construction of advanced dialogs consists of three
phases in the course of a continuous evolution.

Data Design: In this phase, the data model (i.e. an
XML schema) for the aspired dialog is either retrieved
from the reuse repository, extracted from the WSDL
specification of a Web service the dialog shall
communicate with or developed from scratch.

Partition Design: This phase addresses the
modeling of dialog partitions and dynamic behavior
and is ideally supported by a visual drag & drop editor.
Therefore, in the first step, the elements from the
dialog’s data schema are distributed on several dialog
partitions, each of them representing a semantically
cohesive dialog unit. Then, employing predefined
interaction structures like Sequence or Choice,
dynamic transitions between them are defined.

Appearance Design: In this phase, the concrete
appearance of each dialog partition is designed, again
supported by the Web-based editor. Therefore, an
interaction element is assigned to each element from
the data model. Based on the type of a data element, a
possible interaction element was already assigned at
dialog generation time (e.g. input for string, select1 for
enumerations etc.) and can be modified. Furthermore,
style sheets can be applied and additional markup be
inserted. In order to provide additional guidance to the
user, input validations or dynamic features like hints or
auto completion can be defined. Special notations
allow influencing the device-adaptive rendering of a
dialog at runtime. Here again, the visual editor
supports strong collaboration with stakeholders.

Evolution: In case of extensions or modifications
in the data model, the technical framework regenerates
only those elements affected by the change while
preserving the rest. These new or modified elements
can then be designed in detail with respect to partition
membership, dynamic behavior and appearance in the
succeeding phases. For changes not affecting the data
model, the Data Design phase can be skipped.

4. Dialog DSL Building Blocks

This section describes the core pillars of the Dialog
DSL approach in detail: The modeling notation for
specifying dynamic behavior and concrete appearance
of a dialog (4.1), a corresponding Web-based editor
(4.2) and the employed model transformations (4.3).

4.1 The Modeling Notation

The DSM of the Dialog DSL defines two major
groups of concepts: Interaction elements and
interaction structures. Interaction elements represent
high-level user interaction primitives following the
W3C XForms user controls, whereas interaction

40

structures stand for common dynamic behaviors in
dialogs like Sequence or Choice. The Dialog DSL’s
modeling notation defines corresponding notations for
the concepts defined in the DSM.

With regard to interaction elements, employing
well-known dialog user controls turned out to be a
good choice. For example, an input interaction element
is represented by an input field, a select1 interaction
element by a dropdown list control, and a trigger
interaction element by a button. This way we defined a
graphical symbol for each interaction element in the
DSM. The fact that almost all symbols in the DIM
notation were already known to stakeholders made it
rather intuitive. Regarding the modeling of dynamic
behavior by interaction structures, we decided to
employ predefined Petri net constructs. Petri nets are
very suitable for modeling dynamic behavior,
parallelism and the state of a system. These
characteristics can all be found in advanced dialogs,
thus making Petri nets a good choice. In order to
reduce complexity, we predefined a transition template
for each interaction structure, thereby simplifying the
modeling process. In order to achieve separation of
concerns, the modeling notation is divided into two
tiers: The first tier addresses the modeling of dialog
partitions and transitions, whereas the second tier
focuses on the appearance design of each partition.

4.1.1 Partitions & Transitions Modeling Tier

On this tier, semantically cohesive elements from
the dialog’s data model are grouped into dialog
partitions which are represented by Petri net places. At
runtime, if a place is marked, its elements are visible.
Afterwards, transitions between these dialog partitions
are defined using predefined transition templates
according to the DSL’s interaction structures.

Figure 2. A 'Choice' interaction structure as

Petri net transition template.

Figure 2 shows the Petri net representation of a
Choice interaction structure. We consider elements in a
Petri net place again as Petri net places, thus resulting
in hierarchical Petri nets. Accordingly, the Choice
transition template is connected to the element whose
value decides on which transition is fired and to the
various target places. The transitions are labeled with
the various values the element in the source place can

take. To this end, it is advisable to map such an
element to an interaction element with a discrete value
range (e.g. select1), which can be done on the
Appearance Modeling Tier. At runtime, if a place
becomes marked, all elements become marked. When
the user changes the value of an element connected to
a Choice transition, the mark of the element flows to
the target partition, thus making it and its elements
visible. The source partition’s mark, however, is still
there, meaning that both partitions are visible. If this is
not the desired behavior, i.e. the source partition
should become invisible and only the target partition
become visible, the transition would have to be
connected to the source partition instead of the
concrete element. As we are trying to emphasize
simplicity in the modeling notation, we decided to
connect a Choice transition always to the respective
element. In case the source partition shall become
invisible when a transition fires, the transition can be
annotated with a [Replace] tag. It should be mentioned
that, when a partition becomes invisible, its state is
preserved by the marking of its encapsulated elements
and thus is restored when it becomes visible again.

The Petri net representation of a Sequence
Interaction Structure is shown in Figure 3. It represents
a wizard-like navigation through a linear space of
dialog partitions.

Figure 3. A ‘Sequence’ interaction structure.

4.1.2 Appearance Modeling Tier

Based on the dialog partitions defined on the
superordinate tier, this tier focuses on their concrete
appearance design. Figure 4 illustrates a core set of the
possible modeling options. First, an XForms user
control represented by a corresponding graphical
symbol has to be assigned to each data element.
Moreover, labels can be defined and markup, e.g. for
headings, be inserted. Furthermore, a partition can be
semantically tagged as ‘not dividable’, indicated by a
black corner. This means that possible runtime model
adaptations for clients with small displays should
attempt to keep the partition’s elements together. In
case a partition is possibly dividable, this can also be
done on a more fine-grained level for interaction
elements, indicated by a dotted rectangle. Supported by
a corresponding editor, this ‘pen and paper’ modeling
approach can be augmented by configuring interaction
elements in detail using a property editor.

41

Figure 4. Binding XForms User Controls to data

elements and defining semantic groups.

4.2 The Editor

In order to support the model-driven construction
and evolution of dialogs using the modeling notation
described above, we developed a corresponding Web-
based editor. Figure 5 shows screenshots of the
editor’s user interfaces for Partition & Transition
Design (1) and Appearance Design (2). Regarding the
former, the editor displays a list of the elements from
the data model that have not yet been assigned to a
partition (left panel). In the top panel, graphical
buttons for adding new partitions and defining
Sequence or Choice transitions are available. Data
model elements from the left panel can be assigned to
partitions via drag & drop. After having clicked on a
Sequence or Choice transition button, the user can
connect two partitions or an element from one partition
with another partition respectively via clicking on
them. Thereupon, the editor draws the transition and
allows the user to annotate it.

Figure 5. Partition & Transition Design (1) and

Appearance Design (2) in the Web-based editor.

 Each partition contains a button labeled
‘Appearance Design’ leading to its Appearance Design
view (Figure 5-2). There, an interaction element for
each data element can be selected; a default interaction
element has already been assigned based on the data
element’s type. Furthermore, markup, e.g. for
headings, can be inserted and the relative layout of the

interaction elements be defined. Beyond that, a
partition can be tagged as non-dividable and
semantically cohesive element groups can be specified.
A Property Editor allows for the detailed configuration
of each interaction element like e.g. its label,
navigation index, access key or appearance, hint, help
and alert texts, input validations or calculations. A
screenshot of the rendered dialog resulting from the
models edited in Figure 5 is shown in Figure 7.

4.3 Model Transformations

Within the presented DSL approach, two kinds of
model transformations are required: user-agent-related
transformations and model-to-code transformations.

4.3.1 User-Agent-related Transformations

In our approach, dialogs and their decomposition
into partitions should be modeled with respect to a
regular desktop terminal. For user agents with smaller
screens, they have to be further decomposed into
suitable device-specific partitions.

Figure 6. Pagination of a large dialog partition.

Figure 6 illustrates the model transformation for

decomposing Partition A into several smaller
partitions, i.e. Partion A.1-A.3. The pagination
algorithm fills a partition with controls until their
combined estimated size on the user agent exceeds the
given maximum screen size. In that case, an additional
partition is created and filled. As far as possible,
semantic groupings like the grouping of Control 3 and
4 are preserved. The resulting micro-partitions are
connected via the Sequence interaction structure.

4.3.2 Model-Code Transformations

On the one hand, after potential model adaptations
have been conducted by the SBB, it has to translate the
user agent-specific dialog model into executable
markup. On the other hand, in order to enable the
import of existing markup code from third parties and

42

its subsequent adaptation using the Web-based editor,
also transformations in the backward direction have to
be provided. So far, we developed such bidirectional
transformations between the Dialog DSL’s formal
schema, i.e. the DSM, and XForms.

Table 1. Multi-step transformation of
dialog models into final markup.

(1)

DSM-based
pattern

(2) Context-free
grammar rule

Sequence:=P1 P2

(3) Extended rule Sequence:=seq(P1, P2)

(4) Term
rewriting rule

seq(t1,t2)
 <switch>
 <case id=”t1”>eval(t1)</case>
 <case id=”t2”>eval(t2)</case>
 </switch>

Table 1 illustrates the multi-step transformation
process. In the first step, a DSM-based model element
(1) is mapped to a context-free grammar-based
expression (2). Then, this expression is extended by a
term-algebraic operation (3) allowing for their
processing within a term rewriting-based compiler. In
the last step, term rewriting rules are applied to
translate the expressions into the final markup code
(4). Here, term rewriting rules to other markup
languages (e.g. XAML) could be flexibly incorporated.

Figure 7. Rendered dialog with dynamic
Choice (1+2) and Sequence (3) behavior.

5. Practical Experiences

The Dialog DSL was successfully used for several
complex dialogs within the KIM project [1]. The
observed improvements regarding the efficiency and
efficacy of the construction process are promising. Due
to the model-driven approach, the construction time
could be considerably decreased. Moreover, the simple
template-based modeling notation and the associated
editor as well as short iteration cycles combined with
immediate previews allowed for intensified

stakeholder collaboration. For example, adapting the
model and immediately seeing the impact on the
running dialog eased the collaboration a lot. Beyond
that, the modeling notation in combination with the
editor turned out to be rather intuitive, even for
stakeholders with few technical skills. Compared to
similar dialogs developed without the Dialog DSL, we
observed an increase in the dialog’s usability caused
by the adoption of the introduced Interaction Structure
patterns and their intuitive application. Currently, we
are working on a comprehensive empirical study on
the assets and drawbacks of the Dialog DSL based on
diverse scenarios and stakeholder groups.

6. Related Work

In the following, we outline two representative
approaches and point out the differences based on the
requirements presented in section 2.1.

The Object-Oriented Hypermedia (OO-H) method
[8] supports the model-driven construction of dialogs
and their direct transformation into executable source
code. Thus, it fosters agility, even though evolution
cycles with OO-H seem to be longer than with our
approach. Regarding rich dynamic behavior and user
guidance, OO-H defines a valuable interaction pattern
catalogue including static and dynamic navigation
patterns as well as command control patterns.
Although the patterns were defined from a user’s
perspective, they lack an intuitive graphical
representation. Thus, the modeling process for the
experienced designer is eased and the quality of the
resulting interfaces improved. However, regarding the
integration of stakeholders in the development process,
detailed OO-H dialog models still remain quite
complex. The OO-H model compiler is able to produce
markup for various platforms like ASP, JSP, PHP or
WML. Dialog-specific markup languages like XForms
are not included so far.

The Object-Oriented Hypermedia Design Method
(OOHDM) [20] employs Abstract Data View (ADV)
models for the specification of dialogs and their
dynamic behavior [5]. While ADV seem to be suitable
for the formal specification of a dialog’s static and
dynamic aspects, they are rather unintuitive for
stakeholders with few technical skills. Client-specific
dialog adaptations as well as accessibility concerns
have not been addressed yet. Recently, the OOHDM
group proposed an interesting approach towards
enriching hypermedia application interfaces by
animating navigational transitions and thereby
emphasizing semantically important information [10].
With regard to the dynamic transitions employed in

Sequence

P1 P2

43

our approach, it would be interesting to further
investigate how both approaches can be integrated,
thus offering additional guidance to the user.

7. Conclusion & Future Work

Facing the challenges found in the development and
evolution of advanced Web-based dialogs, we
presented a DSL-based engineering approach - the
Dialog DSL. It puts strong emphasis on simplicity,
thereby enabling stakeholders to intensely participate
in the development process. The DSL is formally
based on interaction primitives derived from the W3C
XForms standard and an extensible set of common
dynamic interaction structures like ‘Sequence’ or
‘Choice’. The proposed modeling notation employs
Petri net semantics for the decomposition of dialog
elements into dialog partitions and the modeling of
dynamic transitions between them. Dedicated notations
allow influencing the device-adaptive rendering at
runtime. A Web-based editor supports the easy yet
detailed creation and adaption of dialog models.
Modifications to the dialog model can be performed at
runtime, thus enabling rapid evolution cycles. The
DSL’s technical framework realizes the generation of
raw dialogs from a data schema and facilitates reuse of
dialog models. Moreover, it adapts the dialog model
according to the requesting client’s capabilities and
transforms it into executable markup (e.g. XForms).

We successfully applied the presented approach in
several real-world scenarios and observed promising
improvements. A comprehensive empirical evaluation
of the Dialog DSL will be the next step in our research
agenda. Beyond that, we are striving for identifying
and conceptualizing additional interaction structures
from existing dialogs. Moreover, we are planning to
integrate a proactive rule-based usability validation
supporting the modeler already at design time.

8. References

1. KIM Project Homepage - 2005), University of Karlsruhe:

http://www.kim.uni-karlsruhe.de/
2. Boyer, J.M., et al.: XForms 1.0 (Third Edition) - W3C

Recommendation (2007)
3. Consortium, W.W.W.: Web Accessibility Initiative

(WAI) Homepage - 2006): http://www.w3.org/WAI/
4. Deshpande, Y., et al.: Web Engineering. Journal of Web

Engineering, 2002. 1(1): p. 3-17
5. Fialho, A. and Schwabe, D.: Enriching Hypermedia

Application Interfaces. in Proceedings of 6th
International Workshop on Web-Oriented Software
Technologies (IWWOST'07). 2007. Como, Italy

6. Freudenstein, P., et al.: Model-driven Construction of
Workflow-based Web Applications with Domain-specific
Languages. In Proceedings of the 3rd International
Workshop on Model-Driven Web Engineering. 2007:
CEUR Workshop Proceedings, ISSN 1613-0073.

7. Gaedke, M., Nussbaumer, M., and Meinecke, J.: WSLS:
An Agile System Facilitating the Production of Service-
Oriented Web Applications, in Engineering Advanced
Web Applications, S.C. M. Matera, Editor. 2005, Rinton
Press. p. 26-37

8. Gómez, J. and Cachero, C.: OO-H Method: Extending
UML to Model Web Interfaces, in Information modeling
for internet applications, P.v. Bommel, Editor. 2003, IGI
Publishing: Hershey, PA, USA. p. 144 - 173

9. Kappel, G., et al.: Web Engineering: The Discipline of
Systematic Development. 1 ed. 2006: Wiley

10. Matera, M., Rizzo, F., and Carughi, G.T.: Web Usability:
Principles and Evaluation Methods, in Web Engineering,
E. Mendes and N. Mosley, Editors. 2006, Springer:
Heidelberg. p. 143-180

11. Mcllroy, M.D.: Mass Produced Software Components. in
Sofiware Engineering; Report on a conference by the
NATO Science Committee. 1968. Garmisch, Germany:
NATO Scientific Affairs Division, Brussels, Belgium

12. Nielsen, J.: Forms vs. Applications, in Jakob Nielsen's
Alertbox. 2005

13. Nussbaumer, M., Freudenstein, P., and Gaedke, M.: The
Impact of DSLs for Assembling Web Applications.
Engineering Letters, 2006. 13(2006): p. 387-396

14. O'reilly, T.: What Is Web 2.0 - Design Patterns and
Business Models for the Next Generation of Software -
Online Article (2005): http://www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.html
(18.10.2005)

15. Open Mobile Alliance: User Agent Profile Specification -
2003): http://www.openmobilealliance.org/release%5F
program/uap_v2_0.html

16. Petri, C.A.: Kommunikation mit Automaten. 1962,
Technischen Universität Darmstadt: Darmstadt

17. Phifer, G., et al.: Hype Cycle for Web and User
Interaction Technologies, 2007, in Gartner Reports. 2007,
Gartner, Inc.: Stanford, CT, USA

18. Raman, T.V.: Auditory User Interfaces--Toward The
Speaking Computer. 1997: Kluwer Academic Publishers

19. Roger S. Pressman: Part Three: Applying Web
Engineering, in Software Engineering: A Practioner's
Approach. 2005, McGraw-Hill: New York. p. 499-626

20. Schwabe, D. and Rossi, G.: An Object Oriented
Approach to Web-Based Application Design, in Theory
and Practice of Object Systems 1998, Wiley and Sons:
New York, USA

21. The Standish Group International: CHAOS Research -
Research Reports (1994-2005):
http://www.standishgroup.com

22. Wiegers, K.E.: Software Requirements. Second ed. 2003:
Microsoft Press. 430 pages

44

