

Specification Patterns for Formal Web Verification

May Haydar 1, Houari Sahraoui 1, and Alexandre Petrenko 2
1 Département d'informatique et de recherche opérationnelle, Université de Montréal

CP 6128 succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
{Haidarma,Sahraouh}@iro.umontreal.ca

2 CRIM, Centre de recherche informatique de Montréal
550 Sherbrooke West, Suite 100, Montreal, Quebec, H3A 1B9, Canada

Alexandre.Petrenko@crim.ca

Abstract

Quality assurance of Web applications is usually an

informal process. Meanwhile, formal methods have
been proven to be reliable means for the specification,
verification, and testing of systems. However, the use
of these methods requires learning their mathematical
foundations, including temporal logics. Specifying
properties using temporal logic is often complicated
even to experts, while it is a daunting and error prone
task for non-expert users. To assist web developers and
testers in formally specifying web related properties,
we elaborate a library of web specification patterns.
The current version of the library of 119 functional
and non-functional patterns is a result of scrutinizing
various resources in the field of quality assurance of
Web Applications, which characterize successful web
application using a set of standardized attributes.

1. Introduction

Web development has become one of the largest
and most important parts of the software industry, and
yet little is known about how to fully ensure the quality
of the developed applications [24]. In practice,
currently web quality assurance is conducted
informally. Meanwhile, during the last few years,
formal approaches to verification and testing of
software applications have been proven to be reliable
means to insure their quality especially the behavioral,
i.e., functional correctness. Likewise, several attempts
have been proposed for formal verification and testing
of WAs [2,4,5,8,25,27]. However, these approaches are
often inapplicable by the web community because they
do not exhaustively address the attributes and norms
set by quality assurance specialists, and do not
facilitate for web developers and testers the
understanding of the mathematical foundation
underlying the formal methods. In this paper, we

propose a practical solution to the above stated
problem which facilitates the acceptance of formal
verification technology by the web community. We
study the attributes that designate the good quality of
such applications and propose a library of web
temporal properties. The formalized requirements, i.e.
specifications, relate mainly to the behavioral aspects
of WAs based on user interactions and the way web
resources are rendered. In this paper, we discuss the
main attributes that determine the quality of WAs. We
also present a non-exhaustive inventory of web quality
requirements that can be formulated as formal
properties of WAs. After surveying and analyzing
several resources related to web quality assurance and
usability, we were able to collect 119 quality
requirements. In the context of a formal framework for
run-time verification of WAs, see, e.g., [13,14], the
web requirements once formalized can be verified
against WA models using model checkers. However, to
reduce the hurdle of learning the mathematical
foundations underlying the temporal logic and model
checking theory for web developers and testers, we
map the collected quality requirements into Linear
Temporal Logic (LTL). The formalized properties
could serve as library of web specification patterns,
which can be verified in a given WA.

The rest of the paper is organized as follows.
Section 2 includes a discussion about the major web
quality attributes. In Section 3, we present an overview
of LTL. In Section 4, we discuss the pattern based
approach to specify web properties, the classification
we have used to categorize the web patterns, and the
template used to represent them. In Section 5, we
present the properties listed according to their
categories and sub-categories, as well as examples of
patterns for each sub-category. The full pattern system
can be found in [9]. In Section 6, we present some
results on the use of the web property patterns in

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.38

240

formal web verification. Section 7 includes the related
work, and we conclude in Section 8.

2. Quality Assurance of Web Applications

Kan [18] and Offut [24] discuss the main quality
attributes of WAs, which are explicitly dubbed as
success criteria [18] for WAs. The most important
quality attributes are found to be the frequently called
reliability/functionality, usability, and security/privacy.
These attributes embody the satisfaction and appeal of
users, who if dissatisfied simply move away to another
better quality WA. Other necessary attributes to high
quality WAs are availability, scalability,
maintainability, and performance. In this paper, we
study the first three attributes, namely
reliability/functionality, usability, and security/privacy.
The main reason is that we concentrate on temporal
web specifications related to the behavior (execution)
of the WA itself rather than the specifications that
relate to web servers and access load. This is due to the
inaccessibility of web servers and their code in many
cases, and most of the time, these attributes are
evaluated mainly by analyzing server’s logs, and
measuring response time of the server. Thus, it is not
possible to produce a formal model based on server’s
code or logs, and which can be used in model checking
techniques. Therefore, the four latter attributes fall
outside the scope of this paper. Additionally to the
quality attribute dimension, we identify another
dimension [20] which we believe is indispensable to
the success of WAs, which we call the stakeholder.
The stakeholder dimension introduces the idea that
some requirements are specific to various stakeholders
who have different interests in a given WA. While the
above stated attributes are generic to WAs and are
related to the satisfaction and appeal of the user, the
stakeholder dimension is related to the satisfaction of
the various stakeholders that are involved and have
interest in the WAs. For example, while business
owners are mostly interested in features which could
result in directly achieving financial gains from the
WA, advertisers are interested more in ensuring that
their commercial advertisements properly appear in
key web pages. Also, some WAs require particular
specifications that are not covered by the existing
quality requirements related to the above stated
attributes. For instance, in WAs related to governments
or political parties, the concern might be in carefully
using some statements, phrases or words, which have
to appear a certain number of times, in key web pages.
Also, in online banking, where security is the most
important feature among others, clients are given a

limited number of unsuccessful attempts to login to
their account.

The specifications to satisfy a particular need are
pretty much subjective to the stakeholders themselves.
For this reason, it is not possible to set a fix number of
specific requirements related to this dimension. We
collected a number of these requirements from the
previous research work on formal verification of WAs
[4,5,25,27], while we were able to infer some of them
from browsing through particular WAs.

3. Linear temporal logic

Before we proceed to our approach, we give an
overview of LTL. LTL (sometimes called PTL or
PLTL) extends traditional propositional logic with
temporal operators. LTL is used for property
specification by major formal verification tools, for
instance model checkers Spin and NuSMV. Also, LTL
allows assertions about the temporal behavior of a
system. An LTL formula ϕ has the following syntax:
ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ U ϕ) | (G ϕ) | (F ϕ) | (X ϕ)

where p is an atomic proposition, U is the until
operator, G (or □) is the always operator, F (or ◊) is the
eventually operator, and X (or ο) is the next operator.
Informally, ϕ U ψ means that ϕ remains true until ψ
becomes true. G ϕ means that ϕ is always true. F ϕ
means that ϕ becomes true in a certain state. X ϕ means
that ϕ is true in the next state.

LTL semantics is defined by Pnueli [26] over
infinite sequences of states that correspond to infinite
or non-terminating sequences of computations. LTL
deals only with infinite behavior.

Let M = (S, T, S0, P, L) be a Kripke structure, where
S is a set of states, T ⊆ S × S is a transition relation, S0
⊆ S is a set of initial states, P is a set of atomic
propositions, and L is a labeling function from S to the
power set of P. An infinite state sequence π = 〈s0, s1,
…〉 is called a path (execution) of M if s0 ∈ S0, (si, si+1)
∈ T for all i, i ≥ 0. πi = 〈si, si+1, …〉 denotes the suffix
of a sequence π = 〈s0, s1, …〉 starting at si. Also, note
that π0 = π.

The semantics of LTL formulae on a sequence of
states is defined as follows:
1. π ⊨ p ⇔ p ∈ L (s0),
2. π ⊨ ¬ϕ ⇔ π ⊭ ϕ,
3. π ⊨ ϕ ∧ ψ ⇔ π ⊨ ϕ and π ⊨ ψ,
4. π ⊨ X ϕ ⇔ π1 ⊨ ϕ,
5. π ⊨ G ϕ ⇔ for all i, i ≥ 0, πi ⊨ ϕ,
6. π ⊨ F ϕ ⇔ for some i, i ≥ 0, πi ⊨ ϕ,

241

7. π ⊨ ϕ U ψ ⇔ there exists an i, i ≥ 0, such that πi
⊨ ψ and for all j, 0 ≤ j < i, πj ⊨ ϕ.

The operator W is the weak until operator, such that
ϕ W ψ = ϕ U (ψ ∨ G ϕ).

Note that in the context of verification of WAs, a
given WA is typically modeled by a Kripke structure,
such that states represent web pages, transitions
designate the links between the pages, and atomic
propositions of each state are the attribute valuations in
the corresponding web page. The page attributes are
usually identified by the web user/tester.

While LTL is one of most popular formal notations
for properties or requirements, it has certain
limitations. For instance some properties, such as
reachability of certain page cannot be described.
However, reachability of page could be described in
the negative way, that is as unreachability (G ¬p).
Clearly, if page is not unreachable, it is reachable.

4. Pattern based Approach

Despite the automation of verification techniques,
users of model checkers still must be able to specify
system requirements in the specification language of
the model checker, in particular, mastering the
temporal logic theory. As an example, we present the
following requirement for some types of WAs:
Incorrect login info is allowed for a limited number of
times, and then login is forbidden.

To verify this requirement using LTL model
checker, the web developer or tester has to translate it
into the following LTL formula:
F login → F (login ∧ (X (¬ (blocked) ∨ (relogin ∧ X
(¬ (blocked) ∨ (relogin ∧ X (¬ (blocked) ∨ X (blocked
∧ G (¬ (login ∨ relogin))))))))))

such that login and relogin designate the login and
re-login pages, and blocked designates the page
indicating that the user is not allowed to login anymore
after three trials, and that for instance he has to contact
the company. Clearly, writing such formula is a
daunting task for web developers and testers. Not only
the formula is difficult to read and understand, but it
also difficult to correctly formulate without having the
expertise in LTL. To solve the above stated problem,
we propose a pattern based approach to present the
web specifications in an intuitive and easy to use
manner. Dwyer et al. have developed the Specification
Pattern System (SPS) [30,6,7], where a property
specification pattern describes the essential structure of
some aspect of a system’s behavior and provides
expressions of this behavior in a range of common
formalisms [30]. However, we are not aware of any
attempt to build a library of formal specification

patterns that catalogue the requirements necessary to
ensure high quality WAs. Also, although we employ
patterns from the SPS, many of the web related
formulae fall outside of the range of the SPS’s patterns.
In other cases, we should use several SPS patterns to
represent a single web specification.

In the following, we present a library of web
property specifications; we call it the Web
Specification Pattern System (WeSPaS). This library is
the result of surveying several resources related to web
quality assurance [24,19,30,28], and web usability
namely, IBM usability group [30], and various research
work in the area of analysis and verification of WAs,
including a Ph.D. research work [19] that has studied
quality assurance of WAs. We have also deduced some
requirements by noticing particularities related to some
types of applications. In the analyzed resources,
various requirements are developed for quality
assurance of WAs. Among them, we identified 119
common requirements that can be formally specified
and used in verification of WAs.

4.1. Categorization

To classify the web specifications, we do not keep
the classical categorization of quality attributes. The
reason is that some specifications identified as
stakeholders specific overlap with the other quality
attributes, while others do not fit in any of them. On
the other hand, when analyzing the various quality
requirements, it is possible to distinguish between
requirements related to the ergonomics and design of
web pages, and requirements related to the
functionality of WAs which could cover a range of
web pages of interest. For this reason, we propose a
classification of the described requirements using two
main categories:

Non-Functional. It groups the requirements that
apply mainly to the design and ergonomics of web
pages, which deal with standards related to links in
pages, content management of pages, and navigation
between pages. Therefore, we identify sub-categories:
1 Navigation and Links
2 Presentation and Content

Functional. It groups the requirements that relate to
the functionality of WAs. We notice that many of them
concern a wide range of WAs. On the other hand, we
realize that e-commerce applications have specific
quality requirements when it comes to the
functionality, which do not necessarily apply to other
types of WAs. Therefore, we identify three sub-
categories: Reachability, and Security/Authentication
and Trust, which concern WAs in general including e-
commerce applications, and E-commerce which

242

concerns exclusively e-commerce applications. The
groups are as follows:
1 Reachability
2 Security/Authentication and Trust
3 E-commerce

3.1 Customer Service
3.2 Product Info and Navigation
3.3 Purchase Transaction

4.2. Template
In order to archive the web property patterns in a

library, we need a template to characterize them in a
systematic way. We propose the template which
consists of:
 ID: a unique identifier for each pattern.
 Pattern description: an English description of the

quality requirement.
 Category: the category and subcategory to which

the pattern belongs.
 Page Attributes: the involved page attributes in the

LTL formulation.
 LTL Mapping: the mapping of the quality

requirement into LTL formula.
 Comments: additional information concerning the

pattern and its formulation.
 Source: the source where the quality requirement

of the pattern has been found.
The listed fields help the web developer and tester

choose the properties of interest and provide the LTL
formulation of the properties to verify. Also, the
template’s fields help in extending the library of
patterns with new patterns. Note that each pattern is
assigned a unique ID which encodes the first letters of
the main category and subcategories followed by the
number of the requirements.

5. Library of Web Property Patterns

In this section, we present the web property patterns
constituting a library, categorized in their
corresponding groups. Quality requirements are
formalized as LTL properties that could be checked by
a model checker given that the atomic propositions
which constitute the formalized properties are attribute
valuations existing in individual pages. We only
present examples of full patterns for each category and
sub-category. The complete library can be found in [9].

5.1. Non-Functional Patterns

In this section we present the non-functional
patterns. They are classified into Navigation and Links,
and Presentation and Content groups. They merely
concern standard requirements for good design and
ergonomics of WAs.

5.1.1. Navigation and Links. In this category, we
have identified 36 pattern related to the navigational
aspect of WAs as well as to the links present in web
pages. Since many of the properties can be seen as both
navigation and link property, we make them into one
group. Below we present in Table 1 an example of
Navigation and Links pattern number 17 whose
description is: there exist 1 or 2 links to Author or
webmaster on every navigational path.

Table 1. Navigation and Links pattern number 17.
ID NFN17
Pattern
description

There exist 1 or 2 links to Author or webmaster
on every navigational path

Category Non-functional – Navigation and Links
Page
Attributes

webmaster: integer identification of webmaster
page
webmaster _link: Boolean indicating the
presence for link to webmaster page

LTL
Mapping

BoundedExistenceGlobally (webmaster_link)

Comments
Source Opquast

5.1.2. Presentation and Content. In this category we
identify 25 patterns that relate merely to the design and
ergonomics of each individual page, as well as to the
content within the pages, such as counting certain
objects, or insuring the presence/absence of certain
objects or texts. Table 2 is an illustration of
Presentation and Content pattern number 10.

Table 2. Presentation and Content pattern num. 10.
ID NFC10
Pattern
description

The number of a certain string/object should not
appear more than a specific threshold

Category Non-functional – Presentation and Content
Page
Attributes

num_string: counts the number of a certain
string or object

LTL
Mapping

UniversalityGlobally (num_string <= n)

Comments

Source Opquast

5.2. Functional Patterns

Here we present the functional patterns, thus related
to the functionality and expected behavior of WAs.
They are classified into three main sub-categories:
Reachability, Security/Authentication and Trust, and
E-commerce.

5.2.1 Reachability. The patterns of this class concern
WAs in general. These are 10 patterns related to the
reachability of certain pages. As an illustration, we
present in Table 3 the Reachability pattern number 2:
Home page is reachable from glossary without going
through site map.

243

Table 3. Reachability pattern number 2.

ID FGR2
Pattern
description

Home page is reachable from glossary
without going through site map.

Category Functional – Reachability
Page Attributes home: integer identifying home page

site_map: integer identifying site map
glossary: integer identifying glossary page

LTL Mapping Negation: ExistenceBetween (glossary,
home, site_map)

Comments To check this pattern, it is negated. The
property formulated is “on all paths from
glossary page to home page sitemap is
present”. If the result of verification gives a
counter example, it means the model
checker found at least a path from glossary
page leading to home without going through
sitemap. Then the original property is valid.

Source Literature

5.2.2. Security/Authentication and Trust. We
identified 12 patterns that are related to the security
requirements of WAs. They include properties that
ensure that secure pages are not accessed without
proper authentication, or for specific types of
applications, secure pages are accessed a certain
number of times.

Table 4. Security pattern number 7.
ID FGS7
Pattern
description

Banking information is entered no more
than once before submitting form

Category Functional – Security/Authentication and
Trust

Page Attributes Banking_info: Boolean identifying the
presence of fields for banking information
Submit: identification of page where the
submit button exists

LTL Mapping F (submit) → (¬ (banking_info) W
(banking_info ∧ X (G ¬ (banking_info)
U submit)))

Comments
Source Newly introduced

To avoid intrusions or hackings, some properties
ensure that the user is allowed to mistakenly login no
more than a certain threshold. As an illustration, we
present in Table 4 the Security pattern number 7:
Banking information is entered no more than once
before submitting form.

5.2.3. E-Commerce WAs. The class of E-commerce
patterns comprises specification patterns that concern
mainly e-commerce applications. We classify the
patterns into the following sub-categories: Customer
support, Product Info and Navigation, and Purchase
Transaction. Note that this classification is manly
adopted from the Usability Group at IBM [30].
For the Customer Support sub-category, we identify 13
patterns. For the Product Info and Navigation

subcategory, 13 patterns, and for the Purchase
Transaction sub-category, 10 patterns.

In Table 5, we present the pattern number 6 of the
latter sub-category: Credit card info is entered no more
than once before submitting an order.

Table 5. Purchase Transaction Pattern number 6.

ID FEPT6
Pattern
description

Credit card info is entered no more than once
before submitting an order

Category Functional – E-commerce – Purchase
Transaction

Page
Attributes

Credit_card: Boolean indicating the presence
of fields requesting credit card info in pages
submit: Boolean indicating the submit order
page

LTL
Mapping

F (submit) → (¬ (credit_card) W (credit_card
∧ X (G ¬ (credit_card) U submit)))

Comments
Source Newly introduced

6. Application

In [10,11,12,13] we have developed a formal
framework for run time verification of WA based on
Spin model checker [15]. A prototype tool is
implemented to intercept requests and responses
constituting execution traces [13,14] of a given WA
and to infer an automata-based model translated to
Promela, Spin’s modeling language [15]. Through the
graphical user interface of the tool, the user enters the
page attributes of interest that need to be evaluated in
the given WA.

We have conducted experiments on six WAs that
are single window and multi display, where we verified
properties on the inferred models. We verified
properties from the WeSPaS which include
reachability, security, navigation, and presentation
properties. We list few of them:
1. Non-functional:

1.1. Number of links in each display (single or
multi) should not exceed a certain threshold
(depends on size of application).

1.2. Number of links in each display (single or
multi) is balanced.

1.3. Combinations of certain words/objects are
absent

2. Functional:
2.1. Secure pages are not reachable without

authentication process.
2.2. Promotions of certain products are only

present either on the Home page or on
Shopping pages.

2.3. Secure pages are accessed exactly twice and
each time with authentication.

244

The results of the verification of properties over the
models of the WAs showed that many of the properties
verified were violated. The medium-size applications
are found to have the largest number of property
violations, especially violations of reachability
properties. On the other hand, multi display web
applications especially with frames, irrespectively of
their size or types of properties, were found to have a
larger number of property violations than single
window WAs, even with the simplest properties.
Namely, most of the non-functional properties such as,
Combinations of certain words/objects are absent, and
Number of links in each display (single or multi) is
balanced, though straightforward to check in single
window WAs, were violated in most of the tested multi
display WAs. This is due to the complex nature of
those applications and the concurrent behavior that
they exhibit.

7. Related Work

Web quality assurance has long been studied.
Koyani [17] and Nielsen [22] suggest principles,
guidelines, and recommendations to help developers in
the design of web applications to ensure high quality
WAs. Most of these proposals focus exclusively on
WA usability aspects. In the measurement domain,
Olsina [23] and Ivory [16] develop and classify a wide
range of metrics. They also develop tools to automate,
partially, the usability evaluation process [28].
Although the proposed principles, metrics, and tools
improve the understanding of web quality and its
evaluation, several considered quality requirements
leave a room for subjective interpretation. In this
paper, we studied the web quality assurance problem
from a different perspective and offered an alternative
means to web quality assurance using formal
techniques.

Dwyer et al [6,7] present and analyze over 500
temporal properties, classified in the proposed
specification pattern system [30]. The patterns
constitute abstractions of specifications formulated for
different formalisms in which such abstractions are not
supported. The patterns are categorized into
Occurrence and Order, and are defined on five scopes:
Globally, Before, After, Between, and AfterUntil, which
represent intervals/regions in which properties should
be validated. The temporal properties surveyed in
Dwyer’s work refer to finite state verification of
distributed systems, reactive systems, and timed
systems, but not verification of WAs. While in our
work, we not only analyze existing temporal web
properties, but we study the essential requirements that
satisfy quality attributes of WAs, which in turn we

translate into temporal properties. Although we employ
many of Dwyer’s patterns at the specification level, we
introduce a template to describe the web patterns in
templates with a terminology used by the web
community. We also utilize several patterns of the SPS
to compose a single web pattern. Moreover, our
WeSPaS include specifications using scopes of
arbitrary subsets of states [10,11], which is not possible
with SPS alone.

The only work we are aware of that uses patterns in
Web related properties is that of Pereira et al [25]
which specifies six design patterns for e-commerce
applications classified as construction and verification.
Those patterns are specific to the items to be sold and
the assurance of correctness of their related
transactions. The introduced patterns are specific only
e-commerce applications and do not address other
types of WAs. Also, unlike our work, they do not
provide a library of specifications that helps in
correctly choosing and instantiating a certain pattern
for a particular e-commerce specification.

In conclusion, we believe that our pattern based
approach to build a library of web formal
specifications is novel and offers a practical solution to
the complex problem of temporal logic formulation of
web properties. To our knowledge, there have been no
previous attempts to provide such a solution.

8. Conclusion and Future Work

In this paper, we developed a Web Specification
Pattern System to reduce the hurdle for web users and
testers in formally specifying web properties. We
analyzed a range of resources in industry and academia
referring to the quality attributes. We collected 119
requirements and built the WeSPaS [9], which is a
repository of web patterns, categorized into Functional
and Non-functional patterns. In the future, a tool can be
developed and integrated, for instance, with our web
analysis prototype tool [13] to allow the user to easily
browse through the patterns, choose a particular
pattern, and use its LTL formula for model checking.
This opens the door to another direction of making the
WeSPaS a public repository where other researchers
and experts can add their contributions.

Acknowledgment. We would like to thank Sergiy
Boroday for his valuable comments.
References

1. Boroday S, Petrenko A, Sing J, Hallal H. Dynamic Analysis of

Java Applications for Multi Threaded Anti patterns. 3rd
International Workshops on Dynamics Analysis, St-Louis, MI,
USA, May 17th, 2005.

245

2. Benedikt M, Freire J, Godefroid P. VeriWeb: Automatically
Testing Dynamic Web Sites. 11th International World Wide
Web Conference, Hawai, U.S.A.

3. Clarke EM, Grumberg O, Peled DA. Model Checking. MIT
Press, 2000.

4. De Alfaro L. Model Checking the World Wide Web. 13th
International Conference on Computer Aided Verification,
Paris, France, July 2001.

5. Di Sciascio E, Donini FM, Mongiello M, Totaro R,
Castelluccia D. Design Verification of Web Applications Using
Symbolic Model Checking. 5th Int. Conference on Web
Engineering, LNCS 3579, Sydney, Australia, 2005.

6. Dwyer M, Avrunin GS, Corbett JC. Patterns in Property
Specifications for Finite-state Verification. 21st Int. Conference
on Software Engineering, May, 1999.

7. Dwyer M, Avrunin GS, Corbett JC. Property Specification
Patterns for Finite-state Verification. 2nd Workshop on Formal
Methods in Software Practice, March, 1998.

8. Dwyer MB and Clarke LA. Data flow analysis for verifying
properties of concurrent programs. 2nd ACM SIGSOFT
symposium on Foundations of software engineering: 62-75,
1994.

9. Haydar M, Sahraoui H. WeSPaS: A Specification Pattern
System for Web Verification. Technical Report [CRIM 07/10-
17], Centre de Recherche Informatique de Montreal, October
2007.

10. Haydar M, Boroday S, Petrenko A, Sahraoui H. Adding
Propositional Scopes to Linear Temporal Logic. Technical
Report [CRIM 05/05-06], Centre de Recherche Informatique
de Montreal, May 2005.

11. Haydar M, Boroday S, Petrenko P, Sahraoui H. Propositional
Scopes in Linear Temporal Logic. 5th Int. Conference on
Novelles Technologies de la Repartition, Gatineau, Canada,
August 30-September 1, 2005.

12. Haydar, M, Boroday S, Petrenko A, and Sahraoui H. Properties
and Scopes in Web Model Checking. 20th IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2005). Long Beach, California, USA, November 7-11,
2005.

13. Haydar M, Petrenko A, Sahraoui H. Formal Verification of
Web Applications Modeled by Communicating Automata. 24th
IFIP WG 6.1 IFIP Int. Conference on Formal Techniques for
Networked and Distributed Systems, LNCS, Spain, September
2004, 3235:115-132.

14. Haydar M. Formal Framework for Automated Analysis and
Verification of Web-based Applications. 19th IEEE Int.
Conference on Automated Software Engineering, Linz, Austria,
September 20-24, 2004

15. Holzmann GJ. The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, 2003.

16. Ivory, M. An Empirical Foundation for Automated Web
Interface Evaluation, Doctoral Thesis, 2001.

17. Koyani SJ, Bailey RW, Nall JR. Research-Based Web Design
& Usability Guidelines. National Institutes of Health, 2003.

18. Kan S. Metrics and Models in Software Quality Engineering,
2nd ed. Pearson, 2002.

19. Malak G, Sahraoui H. Badri L, and Badri M. Modeling Web-
Based Applications Quality: a Probabilistic Approach. 7th
International Conference on Web Information Systems
Engineering (WISE), 2006.

20. Malak G, Badri L, Badri M, Sahraoui H. Towards a
Multidimensional Model for Web- Based Applications Quality
Assessment. 5th International Conference on E-Commerce and
Web Technologies, Spain, LNCS Vol. 3182. Springer-Verlag,
316-327, 2004.

21. Millerand F, Martial O. Guide pratique de conception et
d'évaluation ergonomique de sites Web. Montréal, Centre de
recherche informatique de Montréal, 2001. [CRIM-01/08-21].

22. Nielsen, J. Designing Web Usability : The Practice of
Simplicity. New Riders Publishing, 2000.

23. Olsina, L. Web-site Quality Evaluation Method : A Case Study
on Museums. Proceedings of ICSE 99 – 2nd Workshop on
Software Engineering over the Internet, 1998.

24. Offutt J. Quality attributes of Web software applications. IEEE
Software, 19(2): 25-32, 2002.

25. Pereira A, Song M, Gorgulho G. The Formal-CAFE
methodology and model checking patterns in the specification
of e-commerce systems. Electronic Commerce Research, 6:
265-303, Springer Verlag, 2006.

26. Pnueli, A. The Temporal Logic of Programs. 18th IEEE
Symposium on Foundations of Computer Science, 1977, 46-57.

27. Stotts PD, Cabarrus CR. Hyperdocuments as Automata:
Verification of Trace-Based Browsing Properties by Model
Checking. ACM Transactions on Information Systems, January
1998, 16(1): 1-30.

28. Shubert P, Dettling W. Extended Web Assessment Method
(EWAM) - Evaluation of Electronic Commerce Applications
from the Customer's Viewpoint. 35th Hawaii International
Conference on System Sciences, 2002.

29. Temesis - Qualité, conformité, et accessibilité des sites
Internet. Opquast: Quality Best Practices for On-line Services.
2005, from http://en.opquast.com/.

30. The Specification Patterns System. 2002, from
http://patterns.projects.cis.ksu.edu/.

31. IBM Usability. Web Design Guidelines. 2005, from
http://www-306.ibm.com/ibm/easy/eou_ext.nsf/publish/611.

246

