
A Method for Integration of Web Applications Based on Information Extraction

Hao Han and Takehiro Tokuda
Department of Computer Science, Tokyo Institute of Technology

Meguro, Tokyo 152-8552, Japan
{han, tokuda}@tt.cs.titech.ac.jp

Abstract

Integration of Web services from different Web sites has
brought new creativity and functionality to Web applica-
tions. These integration technologies, called mashup or
mixup, have made a shift in Web service development and
created a new generation of widely popular and success-
ful Web services such as Google Maps API and YouTube
Data API. However, the integration is limited to the Web
sites that provide the open Web service APIs, and currently,
most existing Web sites do not provide Web services. In this
paper, we present a method to integrate the general Web
applications. For this purpose, we propose a Web informa-
tion extraction method to generate the virtual Web service
functions from Web applications at client side. Our imple-
mentation shows that the general Web applications can be
also integrated easily.
Keywords: Web application integration, information ex-
traction, Web service, mashup, end-user programming

1 Introduction

With the development of the Internet, the Web becomes
the richest source of information. Although there is a
tremendous amount of information available, they are not
always in the forms that support end-users’ needs. There is
a growing trend of enabling users to view diverse sources
of data in an integrated manner, called mashup or mixup.
These integration technologies have made a shift in Web
service development and created a new generation of widely
popular and successful Web services such as Google Maps
API and YouTube Data API.

However, this integration is based on the combination
of Web services and limited to the Web sites that provide
the open Web service APIs. Unfortunately, most existing
Web sites do not provide Web services. Web applications
are still the main methods for the information distribution.
For example, CNN lets users search for the online news by
entering the keywords at Web page. Once the users sub-

mit the search, CNN would present the news search results.
However, this news search function can not be integrated
into other systems because CNN does not open this search
function as a Web service. Similarly, Wikipedia does not
provide the official Web service APIs and it is difficult for
the developers to integrate it with other Web services.

In this paper, we propose a Web information extraction
method to realize the Web application integration. We select
the target Web applications, search for the desired informa-
tion, and extract the partial information to realize the virtual
Web service functions. All the processes of Web informa-
tion searching and extraction are run at client-side by end-
user programming like a real Web service. We developed
a Java-based class package for Web information searching
and extraction, and the users can integrate Web applications
with our class package easily. Our implementation shows
that we do not need to write too much program.

The organization of the rest of this paper is as follows.
In Section 2 we give the motivation of our research and an
overview of the related work. In Section 3 we explain our
Web information extraction approach in detail. We con-
struct a Web application integration system and give an
evaluation of our approach in Section 4. Finally, we con-
clude our approach and give the future work in Section 5.

2 Motivation and Related Work

With the development of Web 2.0, there are a rapidly
growing number of mashup applications. According to Pro-
grammableWeb [12], a mashup community Web site, the to-
tal number of listed mashup applications is more than 3000,
and on average there are more than 3 new systems gener-
ated everyday in May 2008. Although many users would
like to build mashup applications, the existing Web services
are not adequate for the users’ needs, and many famous and
popular Web sites do not provide Web services.

Many systems have been developed to integrate the Web
applications. The most widely used method is partial Web
page clipping. The users clip a selected part of Web page,
and paste it into a personal Web page. I-know [9] is a sim-

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.29

189

ple Web application to generate a customized personal Web
page. It extracts the partial text information between the de-
fined start keyword and end keyword from a Web page, and
creates a Web page by listing the extracted text information.
However, the extracted information is limited to text. Inter-
net Scrapbook [10] is a tool that allows users to interactively
extract components of multiple Web pages by clipping and
assemble them into a single personal Web page. However,
the extracted information is a part of HTML document and
the users can not change the layout of the extracted parts.
C3W [4] provides an interface for automating data flows.
With C3W, the users can clip elements from Web pages to
wrap an application and connect wrapped applications us-
ing spreadsheet-like formulas, and clone the interfaceele-
ments so that several sets of parameters and results may
behandled in parallel. However, it does not appear to be
easy to realize the interaction between different Web appli-
cations.

Extracting typed data from multiple Web pages is more
suitable to generate mashup applications. Marmite [14], im-
plemented as a Firefox plug-in using JavaScript and XUL,
uses a basic screen-scraping operator to extract the content
from Web pages and integrate it with other data sources.
The operator uses a simple XPath pattern matcher and the
data is processed in a manner similar to Unix pipes. Mash-
Maker [3] is a tool for editing, querying, manipulating and
visualizing continuously updated semi-structured data. It
allows users to create their own mashups based on data and
queries produced by other users and by remote sites. How-
ever, they do not appear to support the integration of dy-
namically generated Web pages like the result pages from
form-based query.

Some approaches are proposed to construct Web services
based on the Web applications to realize the integration.
Pollock [11] can create a virtual Web service from form-
based query interface of Web sites. It generates wrappers
using XWrap, and WSDL file using Web site-related infor-
mation, then publishes the details of the virtual Web ser-
vice into UDDI, but this system needs the users to parse
the HTML documents of the form-based Web pages. H2W
[13] also provides a Web services generation method based
on information extraction from existing Web applications.
These approaches take a great deal of time and skills to cre-
ate such services in a proxy server run between the target
Web applications and users, and it is extremely unlikely that
the constructed Web services can support all the needs of all
of its end-users.

To address these problems, we propose a Web informa-
tion extraction approach to integrate the Web applications.
Compared with the developed work, our approach has the
following features:

• As shown in Fig. 1, all the processes of searching,
extraction and integration are run at client-side by end-

user. The users can realize the different personal Web
services to support all the needs by themselves, and do
not depend on the proxy server.

• We focus on extracting typed data from Web pages and
the extracted result is structured data.

• We extract all kinds of information including text, link,
image and object from different layout such as list and
table.

• We support the information extraction in the static Web
pages and the dynamically generated Web pages such
as the result pages from form-based query.

• The users can realize the continuous information
searching and extraction over multiple Web pages by
end-user programming.

Figure 1. Client-Side-Approach

We explain our approach, construct a Web application
integration system, and give an evaluation in the following
sections.

3 Web Information Extraction

Usually, a real Web service responds to the requests of
users by returning the data in the server-side database. The
Web service developers design the query commands by an
interactive and programming language such as SQL to re-
trieve data in the tables of database. For our Web applica-
tion integration, the Web applications work as the server-
side database and the target Web pages work as the tables.
The end-users use our Web information extraction method
to search for the desired information and extract it.

Compared with Web services, the Web applications are
not suitable for integration because they are designed for
browsing by users, not for the parsing by computer pro-
gram. The Web pages of Web applications, usually in

190

HTML or XHTML formats, are used to display the data in
a formatted way, not used to share the structured data across
different information systems. In order to realize the Web
information extraction, we simulate the browsing of users
by end-user programming to reach the desired information,
and use string matching and tree structures of Web pages to
extract it.

3.1 Data Type

There are many kinds of information in Web applications
such as text, picture and link. During the information ex-
traction, the users need to specify the type of target data.
Data type represents ”What kind of information is needed?”.
For example, in a Web page, usually each link contains an
anchor text associated with a URL. Without the specified
data type, we can not get the right information because we
do not know which one is needed between text and URL.

In a Web page, a visible item represents a piece of infor-
mation that can not be divided into smaller parts, and is the
node value or attribute of a single node in an HTML docu-
ment. We give our data type definition of visible items as
shown in Fig. 2. There are two kinds of data types. The first
kind contains text, image, object and link. Text is the char-
acter string in Web pages such as an article. Image is one
instance of the picture embedded in tag . Object is
one instance of the video or other multimedia file embedded
in tag <object>. Link is a reference to another document or
other resource embedded in tag <a>. Usually, the first kind
of data types are the final results of extraction, and used in
Web information interaction and integration. The second
kind contains select-option and form-input. Many Web ap-
plications use them for Web pages transition. Select-option
is an option in the drop-down list and each option repre-
sents a link. Form-input is an input field in a form used to
accept the users’ queries. The users fill in a text form-input,
submit the form, and the application presents corresponding
results.

We use these six data types in information searching and
extraction in the following sections.

3.2 Information Searching

Not all the contents of Web applications are necessary
and useful for the users. We search for the target informa-
tion in Web pages to realize the query functions. Like the
SQL, we select the information from the target Web pages
where the information satisfies some conditions. We define
the searching function as follows:

Search(P, K, T1, R, T2)

where, P is the target Web page, K is the searching key-
word that refers to the desired information, T1 is the data

Figure 2. Data types: text, image, object, link,
select-option and form-input

type of searching keyword, R is the range of searching, T2 is
the data type of desired information, and the returned value
is the node list of search results. The searching range rep-
resents the number of visible items between the searching
keyword and the desired information, and has five types as
shown in Table 1. The searching keyword is a very im-
portant element during our searching and works as an in-
dex of our desired information. We need to find a suitable
searching keyword because a suitable searching keyword
can give a more precise search result like a well-written
where-clause of SQL.

We give the examples in our implementation.

3.3 Information Extraction

After we find the target node, we need to extract the in-
formation from the node in text format excluding the tags of
HTML document according to the defined data type. There
are three kinds of data structures in the Web pages as shown
in Fig. 3: single, list and table. Single means a node with-
out similar sibling nodes such as the title of an article. List
means a list of nodes with similar paths such as result list
in a search result page. Table means a group of nodes ar-
ranged in 2-dimensional rows and columns such as the re-
sult records in a Google Image Search result page.

Figure 3. Data structures: single, list, table

191

Table 1. The Types of Searching Range
Value Range

R=MAX VALUE the first T2 node following after K in the whole page
R >0 the first T2 node following after K within R
R =0 the T2 node containing K
R <0 the first T2 node previous to K within |R|

R=MIN VALUE the first T2 node previous to K in the whole page

Each HTML document of Web application can be parsed
as a tree structure, and our extraction method is based on
the analysis of the tree structure. We define the extraction
function as follows:

Extract(N, T, S)

where, N is the target node, T is the data type, S is the data
structure, and the returned value is the extraction result list.

We give the detailed processes of extraction in the fol-
lowing sections.

3.3.1 Single

Among the information extraction from three kinds of data
structures, the extraction from a single target node is the
most easy and basic. As described in Table 2, we extract
the information according to the defined data type.

For example, the extracted information of a photo is the
value of attribute src of node , and the extracted in-
formation of a link is the value of attribute href of node
<a>.

We do not extract the information from the select-option
and form-input. They are used in 3.4 for request submitting.

3.3.2 List

The node list extraction is based on the tree structure of
HTML document. In the tree structure, each node has its
own path. We use the following steps to extract the corre-
sponding node list of node N if the data structure is list.

1. We get the path of node N .

2. We get the parent node P of N .

3. We get the subtree S whose root node is P .

4. We get the node list L of which each has the same path
as N without considering the orders of child nodes of
P under S.

5. If we find two or more than two nodes in L, or P is
<body>, then L is the final node list. Otherwise, we
set the parent node of P as the root node of S, then go
to Step 4.

Each node of the extracted node list L represents a part
of list as shown in Fig. 4.

Figure 4. Node List Extraction

We extract the information from each node of node list
according to the data type by the method described in sec-
tion 3.3.1.

3.3.3 Table

The table is often used in Web pages. We extract the infor-
mation from a table structure by using the node list extrac-
tion method twice because the table is 2-dimensional and
can be viewed as a list of list.

3.4 Request Submitting

Usually, for the users, there are two basic types of meth-
ods to send their requests and get the response Web pages.
The first type is to click an option in drop-down list in a
Web page by mouse to view a new Web page. The sec-
ond type is to enter the query keywords into a form-input
field by keyboard and click the submit button by mouse to
send the query. For the request submitting, there are POST
method and GET method, and some Web sites use the en-
crypted codes or randomly generated codes. In order to get
the response Web pages from all kinds of Web sites, we use
HtmlUnit [8] to simulate the submitting operation.

We define the request-submit function as follows:

192

Table 2. Information Extraction from Single Node
Data Type Information

text node value of corresponding node
image attribute value of corresponding node
object attribute value of corresponding <object> node
link embedded link value of corresponding <a> node

Submit(F, K)

where, F is the select-option or form-input, K is the se-
lected item name or query keywords, and the returned value
is the result page. The users give the selected item name or
query keywords, and get the result page as response.

Our request-submit function is applicable to the general
Web sites without the manual analysis.

We use the request-submit function in our implementa-
tion.

4 Implementation and Evaluation

In this section, we implement our approach to combine
Web services, Web feeds and Web applications from more
than one Web sites into a single integrated system. Com-
pared with Web services and Web feeds, we extract the in-
formation from Web applications to realize the functions as
those of the Web services. In order to interact with differ-
ent Web sites, we use the programming language such as
Java and client-side script language such as JavaScript to
call the Web services, parse the Web feeds and extract the
information from Web applications. Finally, these informa-
tion are integrated into a single system and interacted with
each other.

Our system, called World in Web, has the following func-
tions.

1. We can view the following country information after
we select a country from country list as shown in Fig.
5.

A: The position information in map

B: The country name, population, capital city and area,
and the information and photo of the country leader

C: The main cities

D: The latest news

E: The key events of the given year.

2. We can view the following city information after we
click a city from the listed main cities as shown in Fig.
6.

F: The position information in map

Figure 5. World in Web - Country Information

Figure 6. World in Web - City Information

G: The weather information

H: The latest news

We use the following steps to construct our system.

1. We select the target Web services, Web feeds and Web
applications listed in Table 3.

2. As shown in Fig. 7, we realize the function of CNN
news search engine. We search for the form-input from
the top page of CNN, and submit the request to get the
search result page. We extract the result records from
the result page using the searching keyword.

193

Table 3. The Target Web Services, Web Feeds and Web Applications
Type Source Description

Web service(SOAP) Google Maps API [6] diagrammatic representation of an area
Web service(REST) Google Weather API [7] state of the atmosphere such as heat and rain

Web feed(Country List) Google Data [5] country name and ISO code
Web feed(City List) Google Data main city names and positions

Web application(Static URL) BBC Country Profiles [1] history, politics and economic background of countries
Web application(Dynamic URL) CNN News Search [2] CNN Web news article search engine

Figure 7. The Process of CNN News Search

3. As shown in Fig. 8, we realize the function of BBC
country information search. We search for the select-
option at top page of BBC Country Profiles, and sub-
mit the request to get the target country page. We ex-
tract the information of country and leader, and the
URL of timeline page from country page. We search
for the key events using the given year and extract them
from the timeline page.

4. We program to realize the interaction of CNN news

search and BBC country information search with the
Web services and Web feeds.

Our approach is based on the string matching and tree
structures of Web pages. We realize the searching and ex-
traction functions like the retrieval function of SQL, and
complete the integration of Web applications by our defined
functions.

We use data type in our information extraction and our
extraction result is structured data excluding the HTML
tags. The extracted information can be used to interact with
other Web sources freely by users’ needs. Moreover, We
use the data structure of desired information in Web pages
and simplify the extraction process because we do not need
to search for the desired parts one by one if they are grouped
into a list or table.

For the dynamically generated Web pages, the URLs are
changed by the request data, and can be parsed to find the
generation rules if the Web sites use GET method. Some ap-
proaches parse the example Web page URLs manually and
get the generation rules, and get the target Web pages using
the generation rules. However, besides the GET method,
there are POST method and other methods. It is difficult,
or even impossible, to generate the target Web page URLs.
Instead, we get the target page by simulating the submitting
process. It is applicable to all kinds of request-submit and
does not need time-consuming manual analysis.

We give a comparison of the actual program code sizes
in Table 4. Using the defined Search, Extract and Submit
functions, our approach realizes the Web applications inte-
gration without writing too much program.

5 Conclusion and Future Work

In this paper, we have proposed a Web information ex-
traction approach to realize the integration of the general
Web applications. We developed a Java-based class pack-
age for Web applications integration and the users can con-
struct a mashup applications with our class package easily.
All the processes of Web information extraction are run at
client-side by end-user programming, and the users can re-
alize the personal virtual Web service functions by their own
needs without writing too much program.

194

Figure 8. The Process of BBC Country Information Search

Table 4. The Comparison of Program Code Sizes
Country Information Key Events News Search Maps Weather Country List City List

31 lines 9 lines 15 lines 16 lines 37 lines 15 lines 23 lines

Although we realize the Web application integration, our
approach still depends on some manual work such as the
searching keywords decision. As future work, we will mod-
ify our approach to propose an automatic searching key-
words decision function. Moreover, we will give the GUI
for easier configuration and realization of Web application
integration with less programming. Additionally, besides
the current developed Java-based class package, we will de-
velop a JavaScript-based package in future.

References

[1] Country Profiles. http://news.bbc.co.uk/2/hi/country profiles/.
[2] CNN. http://www.cnn.com.
[3] R. Ennals and M. Garofalakis. MashMaker: Mashups for

the masses. In The Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, 2007.

[4] J. Fujima, A. Lunzer, K. Hornbaek, and Y. Tanaka. C3W:
clipping, connecting and cloning for the Web. In The Pro-
ceedings of the 13th international World Wide Web confer-
ence, 2004.

[5] Google Data APIs. http://code.google.com/apis/gdata/.
[6] Google Maps API. http://code.google.com/apis/maps/.
[7] Google Weather API. http://www.google.com/ig/.
[8] HtmlUnit. http://htmlunit.sourceforge.net/.
[9] I-know. http://i-know.jp/.

[10] Y. Koseki and A. Sugiura. Internet scrapbook: Automat-
ing Web browsing tasks by demonstration. In ACM Sym-
posium on User Interface Software and Technology, pages
9–18, 1998.

[11] Y.-H. Lu, Y. Hong, J. Varia, and D. Lee. Pollock: Automatic
generation of virtual Web services from Web sites. In the
Proceedings of the 2005 ACM symposium on Applied com-
puting, 2005.

[12] ProgrammableWeb. http://www.programmableweb.com/.
[13] M. Tatsubori and K. Takashi. Decomposition and abstrac-

tion of Web applications for Web service extraction and
composition. In The Proceedings of the 2006 International
Conference on Web Services, 2006.

[14] J. Wong and J. I. Hong. Making mashups with marmite: To-
wards end-user programming for the Web. In The Proceed-
ings of the SIGCHI conference on Human factors in comput-
ing systems, 2007.

195

