
Declarative Access Control for WebDSL: Combining
Language Integration and Separation of Concerns

Danny Groenewegen
Software Engineering Research Group

Delft University of Technology
The Netherlands

dgroenewegen@gmail.com

Eelco Visser
Software Engineering Research Group

Delft University of Technology
The Netherlands
visser@acm.org

Abstract

In this paper, we present the extension of WebDSL, a
domain-specific language for web application development,
with abstractions for declarative definition of access con-
trol. The extension supports the definition of a wide range
of access control policies concisely and transparently as a
separate concern. In addition to regulating the access to
pages and actions, access control rules are used to infer
navigation options not accessible to the current user, pre-
venting the presentation of inaccessible links. The exten-
sion is an illustration of a general approach to the design of
domain-specific languages for different technical domains
to support separation of concerns in application develop-
ment, while preserving linguistic integration. This approach
is realized by means of a transformational semantics that
weaves separately defined aspects into an integrated imple-
mentation.

1 Introduction

Access control is essential for the security and integrity
of interactive web applications. While a simple ‘all-or-
nothing’ access control policy such as provided by Apache’s
.htaccess file is sufficient for many web sites and applica-
tions, other applications such as conference management
systems, social network services, and online auctions re-
quire more sophisticated policies to regulate the access to
sensitive data and operations on those data. A simple ac-
cess policy can be enforced by means of a generic ‘check at
the gate’, verifying the identity of the user. More advanced
policies grant or deny access based on the identity of the
user, but also the particular entry point, the subsequent ac-
tions to be invoked, and the data to be viewed or modified.
For example, in a social network service, certain pages may
be only accessible to the members of a group, which re-

quires checking the particular combination of page, group,
group membership, and user identity. Definition of such
policies requires close integration with the web application,
tuned to its data model and operations. Furthermore, vali-
dation and verification of a policy requires a concise high-
level specification, separate from the implementation details
of the rest of the application. In practice, existing solutions
for access control for web applications are either separate
policy languages, which cannot be seamlessly integrated,
or application frameworks, which do not support high-level
definition of policies.

Access control policy languages such as Ponder and
XACML [6, 13] are often implemented as an autonomic
system that can be queried for access control decisions.
This approach makes it hard to support flexible access con-
trol. All the information needed for a check has to be ex-
plicitly transferred to the policy engine. Furthermore, these
frameworks do not aid in separating checks from the main
application; the actual check invocations are still scattered
across the application code. Finally, the complexity of these
policy languages (e.g., the RBAC template for XACML
[2]) decreases their readability, resulting in unclear policies.
Web application frameworks such as Spring/Acegi [9, 1]
and Seam [24] support an aspect-oriented approach to ac-
cess control, separating access control code from applica-
tion code. These frameworks supply more or less fixed
role-based [19, 16] and discretionary [15, 17] access con-
trol configurations. Extending the built-in policy or creat-
ing other types of policies requires manually implement-
ing these as an extension of the underlying object-oriented
framework. Such framework extensions are hard to test and
require knowledge of the framework to be able to under-
stand the policies.

This situation is not unique for the domain of access con-
trol. The implementation of web applications comprises
many other technical concerns, including data representa-
tion, querying, and modification, user input, data valida-

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.15

175

tion, user interface design, and navigation. These concerns
are often addressed by separate languages. For example, in
(one configuration of) the Java web programming platform
we find the Java general purpose programming language,
the SQL query language (or some dialect such as HQL), the
JavaServer Faces (JSF) presentation language with the EL
expression language for accessing data, the CSS stylesheet
language, and other XML schemas for configuration such
as page flow declarations.

While separation of concerns and ‘choosing the right
language for the job’ are conceptually appealing, the amal-
gam of languages used in a single web application project
are typically poorly integrated, with an adverse effect on
productivity and software quality. For example, while Java
is a statically checked language, the portions of a web ap-
plication implemented in XML are outside the control of
the Java compiler. Thus, the integration of XML data and
Java classes is not statically verified, requiring run-time de-
bugging and possibly errors that go undetected into produc-
tion systems. The encoding of SQL queries as string literals
entails that queries are only checked syntactically and se-
mantically at run-time, and introduce the risk of injection
attacks. Similarly, the use of dependency injection leads to
leaner programs, but also shifts linking of program compo-
nents from compile-time to deployment- or even run-time.
Besides the loss of static verification, the languages are of-
ten redundant, i.e. need to address overlapping concerns.
For example, the language of EL expressions in JSF is a
poor subset of Java expressions used for accessing proper-
ties and methods of Java objects connected to a JSF page.

Generic aspect languages such as AspectJ [10] achieve
separation of concerns while maintaining the benefits of
linguistic integration, such as static analysis and reuse of
overlapping functionality (e.g. statements and expressions).
However, generic aspect languages are agnostic about par-
ticular (technical) domains such as access control, and thus
require policies to be encoded programmatically, preclud-
ing benefits provided by more declarative definitions.

In previous work we have developed WebDSL, a
domain-specific language for development of web applica-
tions with a rich data model [23]. The language supports
separation of concerns by providing sub-languages catering
for the different technical domains of web engineering. Lin-
guistic integration of these sub-languages ensures seamless
integration of the aspects comprising the definition of a web
application.

In this paper, we present the extension of WebDSL with
abstractions for declarative definition of access control. The
access control policy for an application is defined separately
from the data model and user interface using declarative
rules. While access control rules are defined as a sepa-
rate concern, the extension is linguistically integrated. That
is, access control rules use the same expression language,

which refers to the same data models that are used in the
rest of an application. Furthermore, access control checks
are integrated into the implementation, which allows rules
to access the complete object graph, instead of requiring
selected data to be sent to a separate engine. Rather than
catering for a fixed policy, the extension provides the basic
mechanisms for encoding a wide range of access control
policies that can be adapted to the requirements of the ap-
plication and integrated with its data model. Finally, the
declarative and domain-specific nature of rules allows us
not only to restrict access to pages and actions, but also to
adapt the navigation options presented to users to prevent
them from navigating to inaccessible pages.

The main contributions of this paper are: (1) The gen-
eral approach of designing linguistically integrated domain-
specific languages for different technical domains, realized
by means of a transformational semantics that reduces sep-
arately defined aspects into an integrated implementation.
(2) The design of an access control sub-language for ex-
pressing a wide range of access control policies concisely
and transparently as a separate concern. (3) The use of ac-
cess control semantics for reducing development effort. The
developer can concentrate on the logical design of naviga-
tion, leaving the modality of navigation to the access control
rules.

In the next section we give a brief introduction to
WebDSL, illustrated with the implementation of a small
wiki application. In Section 3 we introduce the access con-
trol extension of WebDSL by providing a group-based ac-
cess control policy for the wiki. In Section 4 we discuss the
expressivity of WebDSL access control by encoding stan-
dard policies such as mandatory, discretionary, and role-
based access control. In Section 5 we present the trans-
formational semantics for weaving access control rules into
an application definition. In Section 6 related work is dis-
cussed. Section 7 contains an evaluation and possibilities
for future work. Section 8 concludes this paper.

2 WebDSL

WebDSL is a domain-specific language for the imple-
mentation of dynamic web applications with a rich data
model [23]. The language provides sub-languages for the
specification of data models, for the definition of custom
pages for viewing and editing objects in the data model,
and as will be discussed in this paper, access control. The
language integrates support for the various concerns of a
web application in a coherent language, while catering for
adequate modularization of web application aspects. In this
section we introduce data models and page definitions using
a simple wiki as running example (Figure 1 and 2). In the
next section we then consider the extension of this example
with access control.

176

Data Models A data model definition introduces named
entity definitions (e.g., Topic and User in Figure 1), con-
taining properties with a name and a type. Types of proper-
ties are either value types (indicated by ::) or associations
to other entities defined in the data model. Value types are
basic data types such as String and Date, but also domain-
specific types such as WikiText that carry additional func-
tionality. Associations are composite (the referer owns the
object, indicated by <>) or referential (the object may be
shared, indicated by ->). Associations can be to collections
such as Set or List. The inverse annotation on a prop-
erty declares a relation with automatic synchronization of
two properties. For example, if User u is an element of
t.authors of a Topic t, then t is an element of u.topics.

Page Definitions Page definitions consist of the name
of the page, the names and types of the objects passed
as parameters, and a presentation of the data contained
in the parameter objects. For example, the topic(t :
Topic) definition 1 creates a page showing the content of
Topic t. WebDSL provides basic markup operators such as
section, header, and list for defining the structure of a
page. Data from the object parameters (and the objects they
refer to) are injected in the page by data access operations
such as output. Navigation is realized using the navigate
element, which takes a page with parameters and a link text
as arguments. Collections of data can be presented using the
iterator construct for, which can filter and sort the elements
of a collection.

Page definitions are a special form of template defini-
tion. User-defined templates allow the developer to de-
fine reusable chunks of WebDSL code. For example, the
main() template 4 defines a general set-up for the page that
is shared among pages of the application. A template may
call other templates, e.g. main calls menubar, body, and
footer. Such templates may be locally redefined in or-
der to insert different content in a template. For example,
topic redefines menubar and body.

In addition to presenting data objects, pages can also
modify objects. For example, the content of a wiki
topic can be modified with the editTopic page 2. The
input(t.content) page element declares an appropriate
form input element based on the type of its argument; in this
case a textarea. A data modification is finalized by means of
an action, which can apply further modifications to the ob-
jects involved. For example, in the saveTopic action the
user is added to the set of authors of the topic. (The notion
of securityContext will be introduced in the next sec-
tion.) The return statement of an action is used to realize
page flow by specifying the page and its arguments where
the browser should be directed after finishing the action.

Other features include a module mechanism for dividing
an application into coherent, and possibly reusable units;

entity Topic {
name :: String (name)
authors -> Set<User>

(inverse=User.topics)
modified :: Date
content :: WikiText

}

entity User {
username :: String (name)
email :: Email
password :: Secret
topics -> Set<Topic>

}

Figure 1. Data model for wiki

module wiki-page imports wiki-data

define page topic(t : Topic) { 1

main()
title{"Topic: " output(t.name)}
define menubar() { topicMenu(t) signinMenu() }
define body() {

section{
header { output(t.name) }
par { output(t.content) }
par { "Contributions by "

for(u : User in t.authors order by t.name)
{output(u) " "} } } } }

define page editTopic(t : Topic) { 2

main()
title{"Edit topic: " output(t.name)}
define menubar() { topicMenu(t) signinMenu() }
define body() {

section {
header { "Edit Topic: " output(t.name) }
form {

par { input(t.name) }
par { input(t.content) }
par { action("Save Changes", saveTopic()) } }

action saveTopic() {
t.authors.add(securityContext.principal); 3

return topic(t); } } } }
define main() { 4

block("page"){
block("menu"){ menubar() }
block("body"){ body() }
block("footer") { footer() } } }

define topicMenu(t : Topic) {
menu{ menuheader{ output(t) }

menuitem{ navigate(editTopic(t)){"Edit"} } } } 5

define signinMenu() {
menu{ menuheader{ navigate(signin()){"Sign in"} } } }

Figure 2. View and edit page for wiki topics
with screenshots.

177

an embedded query language, which ensures that queries
are checked syntactically and semantically (as opposed to
encoding queries in string literals); and regular expressions
for validation of value type properties.

Implementation WebDSL is implemented by a generator
that translates WebDSL definitions to applications based on
the Java/Seam architecture, consisting of high-level appli-
cation frameworks, such as the Java Persistence API (JPA),
JavaServer Faces (JSF), and the Seam web framework [23].
For each entity definition, a corresponding entity class is
generated with fields, getters, and setters for the properties
of the entity, annotated for object-relational mapping ac-
cording to the JPA. For each page definition, a JSF XHTML
page, a Seam Java bean class, and an accompanying inter-
face are generated. The implementation of the generator is
realized with the syntax definition formalism SDF [21] and
the transformation language Stratego [22].

3 Access Control

Web applications that give clients creation or modifica-
tion access to its data, need to trust those clients to well-
behave. Trusting the general public, as is done in sites
such as Wikipedia, requires either faith in human nature or
a large community of moderators checking modifications.
Otherwise a site runs a high risk of corrupted data and/or
(scripted) spam attacks. For most applications the only so-
lution to prevent this, is to impose an access control policy
allowing only known users to access and modify data. Im-
plementing an access control policy requires checking the
permissions of the user to open a page, to perform an ac-
tion, or even to see part of a page, implying checks scat-
tered across the definition of an application. Such embed-
ded checks make it hard to understand the access control
policy they implement. We have designed and implemented
an extension of WebDSL to support separate and declara-
tive specification of access control for an application. In this
section we illustrate the language features for declarative
access control by extending the wiki example of the previ-
ous section with a variation on discretionary access control.
In the next section we give a more systematic account of
the expressivity of the language for encoding standard ac-
cess control policies such as mandatory, discretionary and
role-based access control.

Authentication The first step of any access control sys-
tem is to establish the identity of the user (the principal)
by means of an authentication procedure typically requiring
the user to declare a (public) username and (secret) pass-
word. When a username and password combination corre-
sponds to a registered user, that user is logged in, and his
identity stored for the duration of the session.

principal is User with credentials username, password 6

session securityContext { principal -> User } 7

function authenticate(name : String, pw : Secret): Bool { 8

var users : List<User>
:= select u from User as u where (u.username = ~name);

if (users.length = 1 && users[0].password.check(pw))
{ securityContext.principal := users[0]; return true; }

else { return false } }

define page signin() { 9

main()
define body() {

var name : User;
var pw : Secret;
form{ table{

row{"username: " input(name)}
row{"password: " input(pw)} }
action("Sign in", signin()) }

action signin() {
if (authenticate(name, pw))

{ return user(securityContext.principal); }
else { return accessDenied(); } } } }

Figure 3. Principal, security context, and au-
thentication.

Thus, the first step in setting up an access control policy
is to declare the principal as a combination of an entity type
to represent users, and their credentials, i.e. the properties
of the user entity that play a role in authentication. Fig-
ure 3 shows the authentication definitions for the example
wiki application. The User entity is declared as principal
with username and password as credentials 6. Note that
any entity can be used as principal; User is not a built-in
notion. The credentials should consist of one or more prop-
erties with type Secret (passwords) and one or more prop-
erties that form a primary key to identify the user object.

From this declaration, a session entity security-
Context is derived 7, which holds session data related to
access control, in particular a reference to the principal.
Session entities are attached to a client session and are ac-
cessible from any page definition. In Figure 2 we used the
securityContext to obtain the principal and record that
user as author of the topic in editTopic 3. Furthermore, an
authentication function is derived 8, which checks the cre-
dentials against the database (using an embedded query),
and upon success initializes the securityContext. The
authentication function can be used to implement a dialog
such as the signin() 9 template to authenticate a user,
given his credentials.

Restricting Access Given the ability to authenticate a
user against a database of known users, a very first basic
access control policy is to distinguish anonymous visitors
from authenticated users. For instance, in the wiki we could
allow anyone to view topic pages, but only allow logged in
users to edit the content of a topic. This policy is expressed
by means of the following access control rules:

rule page topic(t : Topic) { true }

178

rule page editTopic(t : Topic) { loggedIn() }

The first rule states that the condition for accessing the
topic page is true, thus access is always granted. The
second rule states that the editTopic page can only be ac-
cessed if loggedIn() is true; the loggedIn predicate is
generated by default when a principal is declared and con-
sists of a simple principal != null check.

In general, an access control rule has the form rule r

i (~x){e } with r the type of definition or resource (page,
template, function, or action), i the identifier of the
definition, ~x its parameters (a list of identifier and type
pairs, just like the parameters of a page definition), and e

a Boolean expression over the parameters of the rule and
the session entities of the application. When the expression
evaluates to true, access is granted, when it evaluates to
false, access is denied. We do not use a logic with more
than two values to indicate that a rule is not applicable or
that an error occurred in its evaluation. In those cases a rule
should just evaluate to false and access be denied. When
access control is enabled by declaring a principal, and no
rule exists for a certain resource, access to that resource is
denied by default.

Representing Access Permissions Most applications re-
quire a more sophisticated access control policy than just
authenticating the user. Rather, some combination of the
identity of the user and aspects of the state of the application
are involved to make a decision. As an example, we develop
a policy in which wiki users have view or edit access to top-
ics based on group membership. Such a policy requires the
administration of the access rights of users. Instead of us-
ing a specialized, built-in data type for this administration,
WebDSL employs the same data models it uses for other
data of the application, ensuring a seamless integration of
access control with the rest of the application.

To model the group membership policy we introduce a
UserGroup entity 10 with a name and a set of Users as
members (Figure 4). Next we extend the declaration of the
entity User with a property groups 11, as the inverse of the
members property (if u in g.members then g in u.groups).
Entity extension is a modularity feature that allows proper-
ties to be declared together with the other definitions for
the aspect they pertain to (akin to intertype declarations in
AspectJ [10]). With this representation of groups, we can
then define the notion of an access control list ACL 12 as an
entity with a viewers and editors property, which both
refer to a set of groups, with the intention that members of
these groups have the corresponding permission. Finally,
the Topic entity is extended 13 with an acl property to rep-
resent the access permissions for the object.

entity UserGroup { 10

name :: String (id, name)
members -> Set<User>

}
extend entity User { 11

groups -> Set<UserGroup> (inverse=UserGroup.members)
}
entity ACL { 12

viewers -> Set<UserGroup>
editors -> Set<UserGroup>

}
extend entity Topic { 13

acl -> ACL
}

Figure 4. Representing permissions.

access control rules
predicate memberOf(gs : Set<UserGroup>) { 14

Or[g in gs | g : UserGroup in principal.groups]
}
rule page topic(topic : Topic) { 15

(t.acl.viewers.length = 0) || memberOf(topic.acl.viewers)
}
rule page editTopic(topic : Topic) { 16

memberOf(topic.acl.editors)
}

Figure 5. Checking permissions.

Checking Access Permissions Given the encoding of ac-
cess permissions we can now define the rules that de-
clare the access to specific pages and actions (Figure 5).
The memberOf predicate 14 tests whether the principal is
member of one of a given set of groups gs, by check-
ing if one of the groups of the principal occurs in gs
(which is equivalent, through the inverse relationship be-
tween UserGroup.members and User.groups). Note
that inside an access control rules section the mem-
bers of the securityContext are directly accessible,
which is why principal can be used here instead of
securityContext.principal. This predicate is then
used in the definition of the access control rules. The rule
for the editTopic page 16 requires that the principal is
member of one of the editors groups. The rule for the topic
page 15 requires that the principal is member of one of the
viewers groups, however, when no such group is regis-
tered, access is open for anyone.

Restricting Navigation The rules above forbid access to
an edit page if the user is not a member of the editors
groups. However, the menu of the view page for a topic
contains a link to the edit page for that topic through the
navigate(editTopic(t)){"Edit"} element 5 in tem-
plate topicMenu in Figure 2. When a user without the
proper permission follows this link, he will end up in the
accessDenied() page. Following these ’dead’ links can
be prevented by letting the visibility of the navigate link
depend on the same check as specified for the target of
the navigation. Thus, only relevant navigation options are
presented to the user, improving the user experience. This

179

behavior can be inferred because of the declarative (as op-
posed to programmatic) formulation of access control rules.

Administration The administration of access rights also
requires a user interface. Since WebDSL employs the same
data models for access rights as for any other application
data, the same user interface modeling can be used to imple-
ment a user interface for access administration. For exam-
ple, an editUserGroup page can be defined to edit the col-
lection of members of a group and an editPermissions
page 18 for editing a Topic’s ACL. Of course, the access to
such administration pages should be controlled as well, lest
the access control of regular pages becomes meaningless.
If anyone can add members to a group, the rule for edit ac-
cess of a topic has no value. Thus, to control the access to
groups and access control lists themselves, we extend these
with a moderators property 17 indicating who can modify
these objects (Figure 6). Then access control rules can be
defined 19 to restrict the access to the pages for editing per-
missions. A group may only be edited by the users in the
moderators collection and an ACL may only be edited by
members of the acl.moderators groups.

Policy Combination Often it is useful to equip an admin-
istrator with special rights, for instance to access any pages
and perform all kinds of edits. With the rules discussed
so far, this would require adding to each rule a disjunct
that checks whether the principal is an administrator, which
would hardwire this policy and pollute many rules. Instead,
WebDSL provides the possibility of combining sets of rules
into a policy. For this purpose, a set of rules can be given
a name, which is used to refer to it. Unnamed rule sets
are combined into a single set with the name anonymous.
Rule sets can be combined using the OR and AND opera-
tors. For example, to allow an administrator to access all
pages, a generic rule 20 can be used (Figure 7). A generic
rule can use a wildcard for the name of the element and/or
the parameters of the element. Such a rule applies to ele-
ments to which it matches. Thus a rule with signature page
() applies to all page definitions. Of course, a rule with
a wildcard for the parameters cannot involve information
from the parameter objects. Here, adminGroup 21 is an
application-global variable that identifies a particular object
of type UserGroup. The generic rule is placed inside a rule
set named admin. The admin rule set is then combined with
all previously defined (anonymous) rules using the OR op-
erator 22, which entails one has access to a page when either
of the rules matching the same page or action succeed.

Active Group With the admin policy above, a user who
is administrator can always apply all actions, similar to al-
ways being logged in as super user in a Unix system. Thus,
an administrator is not protected against mistakes, nor does

extend entity UserGroup { 17

moderators -> Set<User>
}
extend entity ACL {

moderators -> Set<UserGroup>
}
define page editPermissions(t : Topic) { 18

main()
define body() {

section{
header{"Edit Permissions of " output(t) }
form{

table{
row{"Viewers: " input(t.acl.viewers)}
row{"Editors: " input(t.acl.editors)} }

action("Save", savePermissions()) }
action savePermissions() {

t.save();
return topic(t); } } } }

access control rules 19

rule page editUserGroup(g : UserGroup) {
principal in g.moderators

}
rule page editPermissions(t : Topic) {

memberOf(t.acl.moderators)
}

Figure 6. Administration of permissions.

access control rules admin
rule page *(*) { 20

isAdministrator()
}
predicate isAdministrator() {

adminGroup in principal.groups 21

}
access control policy 22

anonymous OR admin

Figure 7. Combination of rules.

extend entity securityContext { 23

activeGroups : Set<UserGroup>
}
access control rules

predicate memberOf(gs : Set<UserGroup>) { 24

Or[g in gs | g : UserGroup in activeGroups] }
access control rules admin

predicate isAdministrator(){ adminGroup in activeGroups } 25

Figure 8. Active groups.

the administrator ever see the application as normal users
see it. In order to enable the privileges of an adminis-
trator, or other group membership, only when needed, the
policy can be refined by introducing the notion of active

180

groups (Figure 8). The activeGroups property that is
added to the securityContext 23 represents the subset of
the groups of the user in which he is active at the moment.
By changing the memberOf 24 and isAdministrator 25

predicates to take into account only activeGroups instead
of principal.groups this policy is implemented.

4 Access Control Policies

WebDSL provides high-level, policy neutral mecha-
nisms for defining access control, that is, without mak-
ing assumptions about the type of policy to be enforced.
The flexibility of the mechanisms allows the adaptations of
standard policies typically needed in practical settings, and
enables the combination of elements from different policy
models. In this section, we discuss the three major access
control paradigms and we show how these policies can be
elegantly encoded in WebDSL.

Mandatory Access Control Mandatory Access Control
(MAC) [18, 15] models are based on assigning labels (e.g.
TopSecret, Secret, Confidential, Unclassified) to
subjects and objects for determining access permissions.
Subjects have a clearance label that indicates what type of
resources the subject can access. Objects have a classifi-
cation label which represents their level of protection. The
relative importance of labels is determined by a partial order
on labels. In MAC policies the distinction between the user
(human interacting with the system) and the subject (pro-
cess working on behalf of the user) is important, because a
user can create a subject at any clearance label dominated
by theirs. Domination of a clearance label means the label
itself and all below it in the hierarchy.

MAC policies are mainly aimed at preserving confiden-
tiality of information contained in objects. Protection of
confidentiality deals with information flow, by preventing
unsafe transfer of (the contents of) objects to other security
labels in the system. To protect confidentiality two proper-
ties must hold. (1) The simple security rule, also known as
the read-down property, states that a subject needs to have a
security clearance higher than or equal to the security clas-
sification of an object to be able to read it. (2) The liberal
*-property, also known as the write-up property, states that
a subject needs to have a security clearance lower than or
equal to the security classification of an object to be able to
write it. This is needed to prevent leaking confidential in-
formation to lower clearance labels. A stricter form can be
used to prevent low subjects to overwrite high data (which
is possible with the liberal *-property). This form only al-
lows writing where the clearance matches the classification,
and is known as the strict *-property.

The policy in Figure 9 is an encoding of the MAC policy
in WebDSL. The policy considers reading as accessing the

entity Label { 26

name :: String
higher -> Set<Label> (inverse=Label.lower) 27

lower -> Set<Label> (inverse=Label.higher) 28

predicate dominates(l : Label) { 29

l = this || Or[l2.dominates(l) | l2 : Label in this.lower]
}

}
extend entity User { 30

clearance -> Label
}
extend entity Topic {

classification -> Label
}
extend session securityContext { 31

activeClearance -> Label
}
access control rules

rule page topic(t : Topic) { 32

activeClearance.dominates(t.classification)
}
rule page createTopic() { 33

true
rule action save(t: Topic) {

t.classification.dominates(activeClearance)
}

}
rule action activateClearance(c : Label){ 34

principal.clearance.dominates(c)
}

Figure 9. Mandatory access control.

topic view page for a Topic object, and writing as saving
a Topic with the createTopic page, which can only be
used to create a page; editing existing topics is not possible
in this example. The users in the model are simply the User
entities. To provide a distinction between user and subject,
the securityContext is extended to represent the current
subject with an active clearance label.

Clearance and classification labels are represented by the
entity Label 26. The partial order on Labels is represented
by the higher 27 and lower 28 properties, which represent
the direct parent and direct child Labels of a Label, re-
spectively. The dominates predicate 29 defines the transi-
tive closure of the relation. The User and Topic entities are
extended with a property representing the security clearance
and classification, respectively 30. The activeClearance
property of the securityContext session entity 31 repre-
sents the clearance label of the subject.

The simple security rule is now implemented by the rule
for topic 32, which states that topics may be viewed by
subjects with a clearance label dominating the classification
of the topic. The liberal *-property is implemented by the
rule for the save action of the createTopic page 33: a
topic can only be created if its classification (as indicated in
the form of the createTopic page) dominates the subject’s
clearance label. The activation of the subject’s label must
also be protected to complete the implementation 34; only
labels dominated by the principal’s clearance label can be
used as active clearance of the subject.

Note that administration of user-label assignments and
editing of labels is not part of the MAC model and we fol-

181

lowed this model by having predefined user-label assign-
ments and no editing of labels.

Discretionary Access Control Discretionary Access
Control (DAC) models are based on listing permissions for
users and objects [15, 17]. The user’s identity and autho-
rizations determine the permissions granted for each object.
DAC policies are usually closed policies, only specifying
the granting authorizations and denying by default. DAC
policies often use the concept of ownership to determine
permissions, the user that creates an object becomes the
owner and has all the permissions for it. The owner can
allow other users access to its owned objects (this decision
is at the owner’s discretion). This also puts the administra-
tion tasks in the hands of the owner. These tasks include
granting other users access to the object, revoking that ac-
cess, allowing others to help with administration (delega-
tion), or simply deleting the object. Policies vary greatly in
administrative capabilities available, some of the variation
possibilities are: allowing ownership transfer; the granting
of administration tasks to others can be limited (for exam-
ple, only one person can get these permissions besides the
owner); the revocation of the permissions granted can be
linked to the user that specified the permissions.

DAC policies are often described using the Access-
Matrix Model [17], a generic model for describing access
control policies. It is based on the idea that all resources
controlled by a computer system can be represented as ob-
jects. By listing all the permissions for these objects, the
entire access control system can be described. To use the
access matrix model, one needs to identify objects, the re-
sources that need to be protected, subjects, the users or
processes created by the user that need to access objects,
and permissions, the operations that apply to an object and
which need to be protected in the system. These concepts
are used to describe a policy matrix, with subjects as indices
for rows and objects as indices for columns. The set of per-
missions, i.e. the operations a subject s may apply to object
o is listed in the matrix at [s,o]. Since the Access-Matrix
is usually sparse, it is rarely stored as an actual matrix in a
system. Instead the matrix is represented by means of an
access control list (ACL), with each object holding a list of
the subjects and their permissions for that object, or as a
capabilities list, with each subject holding a list of the ob-
jects and the permissions the subject has for those objects,
or as an authorization table, storing permissions as triples
of subject, object, and permissions.

The discussion of WebDSL access control in Section 3
already presented elements of a DAC policy. The example
in Figure 10 is a variation using ownership of objects. The
owners determine the configuration of the ACL for the ob-
jects they own, but can also promote other users to be able
to configure the ACL, implying a one level granting of ad-

entity ACL { 35

viewers -> Set<User>
editors -> Set<User>
moderators -> Set<User>

}
extend entity Topic {

owner -> User 36

acl -> ACL 37

}
access control rules

rule page topic(t : Topic) { 38

principal = t.owner || principal in t.viewers
}
rule page editTopic(t : Topic) {

principal = t.owner || principal in t.editors
}
rule page editTopicACL(t : Topic) { 39

principal = t.owner || principal in t.moderators
}
rule page changeTopicModerators(t : Topic) { 40

principal = t.owner
}

Figure 10. Discretionary access control.

ministration rights. Ownership is represented by means of
an owner property in the Topic entity 36. An ACL 35 is
used to hold the access rights, this is added to the object 37,
in this case the Topic entity. The moderators set of users
consists of the users with rights to change the viewers and
editors sets of the corresponding Topic. The view and
edit pages are protected by rules 38 that verify that the prin-
cipal is either the owner, or another user that is specifically
allowed a certain type of access. The page for editing the
ACL of a topic is accessible only to the owner of the topic or
one of the designated moderators. Finally, the set of moder-
ators of a Topic can only be changed by the owner 40 (one
level granting of administration rights). This implementa-
tion is an alternative (more pure) DAC policy, without the
RBAC elements that are present in the example from Sec-
tion 3.

Role-Based Access Control Role-Based Access Control
(RBAC) [17, 15, 19, 16, 8] models have been the basis for
access control research in the last decade and they are also
widely applied in application frameworks. The observation
leading to RBAC is that individual users are usually not that
important in deciding on permissions (besides auditing pur-
poses), rather it is the task they need to perform that deter-
mines the necessary permissions. A role corresponds to a
group of activities needed to perform a job or a task. These
activities form the permissions that are linked with the role.
When users are assigned to roles, they gain the permissions
assigned to those roles. This better reflects organizational
structures, which make common operations easy. For in-
stance, a change of function inside an organization only re-
quires a change of role assignment in the access control sys-
tem. This action would have been a lot more complicated
in a DAC policy where the permissions are directly linked
to the user.

182

The main benefits of RBAC are: Access control admin-
istration: user/role assignment and role/permission assign-
ment are separated. The administrator is mostly concerned
with user/role assignment, so the role/permission assign-
ment can be hidden in an application. Hierarchical roles:
many applications consist of a natural hierarchy of roles,
where some roles subsume the permissions of others. Least
privilege: a user can activate the minimal role able to per-
form a task, this can protect the user from malicious code
or inadvertent errors (similar to MAC policies). Separation
of duties: no user should have enough permissions to abuse
the system on their own, this can be enforced by separat-
ing the steps in critical actions among roles. For example,
a user should not be able to create fake payments and also
accept them. Constraint enforcement: the roles can be ex-
tended with constraints on activation or assignments, this
allows more specialized access control policies.

The formalisation of RBAC in [19, 16] proposes a fam-
ily of models for RBAC. RBAC0 is the basic model, which
consists of users, roles, permissions as entities. Role as-
signment to users and permission assignment to roles de-
termine the configuration of RBAC0, which also provides
the concept of a session, which is an activated subset of the
user’s roles. The permissions from the roles in the session
are the ones that can be used in access control decisions.
The concept of user controlled sessions creates a distinction
between subject and user similar to MAC policies. RBAC1
introduces role hierarchies to model lines of authority and
responsibility. Senior roles inherit the permissions of junior
roles, and junior roles inherit the user assignment of senior
roles (other implementations of role hierarchies allow acti-
vation of junior roles to support hierarchies). RBAC2 adds
constraints to the RBAC model.

The notion of groups used in the example of Section 3
is similar to roles. They are activated by the user and
carry permissions with them. The example presented in
Figure 11 gives an RBAC implementation with hierarchical
roles — editor as a senior role of viewer — and separation
of duty constraints — administrators may not be viewers
or editors. The permissions are encoded in the policy, and
role/permission assignment is fixed during execution. This
is a reasonable simplification that is used in many practi-
cal solutions such as Acegi [1] and Seam [24]. The data
model extension to implement RBAC consists of a Role
entity 41, a reference to a set of Roles in the User entity 44,
and a reference to a set of roles in the securityContext 45

to represent the activated roles (roles in the session). The
role hierarchy is constructed by specifying which roles are
the direct junior roles in the juniors property 42. The
equalOrSenior predicate 43 added to the Role entity ver-
ifies whether a role is equal or senior to another role. In this
example application, the roles are defined statically as ap-
plication variables 46. The access control rules, then, define

entity Role { 41

name :: String
juniors -> Set<Role> 42

predicate equalOrSenior(r : Role) { 43

r = this
|| Or[r2.equalOrSenior(r) | r2 : Role in this.juniors]

}
}
extend entity User { roles -> Set<Role> } 44

extend session securityContext { activeRoles -> Set<Role> }45

var admin : Role := Role { name := "Administrator" }; 46

var editor : Role := Role { name := "Editor"
juniors := {viewer} };

var viewer : Role := Role { name := "Viewer" };

access control rules
predicate isActive(r : Role) {

Or[r2.equalOrSenior(r) | r2 : Role in activeRoles]
}
rule page topic(t : Topic) { isActive(viewer) } 47

rule page editTopic(t : Topic) { isActive(editor) } 48

rule page editRoles(u : User) { 49

isActive(admin)
rule action save() { 50

!(administrator in u.roles
&& (viewer in u.roles || editor in u.roles))

}
}

Figure 11. Role-based access control.

that viewing a Topic requires the viewer role to be active
or to be a junior of another activated role (editor) 47, and
editing a Topic requires the editor role to be active 48. For
administration purposes the page editRoles is created that
allows editing the roles property of a User. This page re-
quires the administrator role to be active 49. Furthermore,
implementing separation of duty, the save operation has an
additional check to prevent illegal changes to the user/role
assignments 50.

5 Transformational Semantics

In the previous sections we have seen that access con-
trol is defined separately from the rest of a WebDSL defini-
tion. In order to enforce the rules specified in a policy, local
checks are introduced into pages, templates, and actions. In
this section, we give a high-level description of the weaving
transformations realizing this. The resources of a WebDSL
application that can be protected are pages, templates, and
actions. Furthermore, it is possible to restrict access more
specifically to resources relative to other resources, e.g., ac-
tions within pages and actions within templates, or to re-
sources that use another resource such as actions that use
functions. The semantics of protecting a resource differs
for these resources and the combinations, which indicates
the need for the semantics description given in this section.
Figure 12 defines the syntax of WebDSL access control. In
this syntax other WebDSL elements start with w-, to show
where access control is inserted. In the transformations we
use ~x to denote a list formal parameters x1 : S1, ..., xn : Sn.

183

w-definition
-> "access control rules" w-id? ac-definition*

ac-definition
-> ac-principal | ac-rule | predicate

ac-principal
-> "principal is" w-id "with credentials" {w-id ","}*

match-args
-> w-farg | "*" | {w-farg ","}+ ",*"?

ac-rule
-> "rule" w-id w-id "*"? "(" match-args ")"

"{" w-expr ac-rule* "}"
predicate

-> "predicate" w-id "(" {w-farg ","}* ")" "{" w-expr "}"

Figure 12. Syntax of WebDSL access control

Policy Normalization The first step in the implementa-
tion is the normalization of rule sets and the policy defini-
tion to a single set of non-overlapping rules, as defined in
Figure 13. (Note that only the rules for OR are shown; the
rules for AND are dual, with && instead of ||.) We say that
two rules match if they have the same signature, i.e., re-
source type, name, and parameters are the same. If a rule
set contains two matching rules, they can be merged into a
single rule with the conjunctions of the two expressions as
expression (Combining Rules). The OR operator applied to
a pair of matching rules turns into a single rule with the dis-
junction of the expressions. The OR operator applied to two
sets of rules produces the pairwise disjunction of matching
rules. That is, assuming that the argument sets are normal-
ized and thus contain for each resource at least one rule, if
a matching rule exists in each set they are combined with
the OR operator. Rules for which no matching counterpart
exists are taken as is.

Rule Weaving Figure 14 defines the instrumentation
rules that insert checks into pages and actions. As an ex-
ample we consider the following simplified page rule trans-
formation:

define page p (~x) { elem* }

Page: ⇓ rule page p (~x) { e } ⇓

define page p (~x) {
init{ if(!e) { redirect accessDenied(); } }
elem*

}

The rule states that an access control rule with signature
page p (~x) inserts an init block in the page definition
with the signature page p (~x) containing a redirect to the
accessDenied page in case the condition of the rule eval-
uates to false. The notation is slightly simplified here for
clarity, in the actual implementation the ~x also matches with
different names for the arguments and the inserted e has the
correct names substituted accordingly.

The weaving of pages is more interesting if the page
has other initialization statements, which is shown in the
Page transformation in Figure 14. The other transforma-
tions shown are the following: Action protects the execution

(rule r i (~x) {e1 }) (rule r i (~x) {e2 })

⇓ Combining Rules ⇓
rule r i (~x) { e1 && e2 }

(rule r i (~x) {e1 }) OR (rule r i (~x) {e2 })

⇓ OR ⇓
rule r i (~x) { e1 || e2 }

(r1 ... rn) OR (q1 ... qm)

⇓ combining rule sets with OR ⇓
(u1 ... uk) (v1 ... vl) (s1 ... sm)
where

ui = (rh OR qj) if rh and qj match
vi = rh if no matching q
si = qj if no matching r

Figure 13. Policy normalization.

of an action, Template controls the view of the template’s el-
ements, PageAction shows what a nested action check in a
page means, TemplateAction shows a nested action check
in a template, Navigation is the semantics of inferring nav-
igation link visibility from page rules (e’ is e with formal
arguments ~x substituted by actual arguments ~y).

6 Related Work

In previous work we have developed MetaBorg [5],
an approach for embedding domain-specific languages in
general-purpose languages, and StringBorg [4], an ap-
proach for syntactically embedding query and shell lan-
guages to prevent injection attacks. This work extends the
repertoire to the embedding of DSLs in DSLs with a global-
to-local weaving transformation as assimilation. We have
implemented WebDSL, in general, and the weaving trans-
formation, in particular, with the transformation language
Stratego [22].

Language Design Mikkonen and Taivalsaari [12] argue
that software engineering principles have degraded with the
recent paradigm shift to web applications. The incremental
growth from static HTML pages to desktop application re-
placements has left a trail of languages which require tool
support to cope with. Developers need to learn these tech-
nologies which prevents them from focussing on learning
actual web application design principles, such as access
control. We review the software engineering principles of
[12] for WebDSL access control: Separation of concerns:
One of the main goals of WebDSL access control is achiev-
ing separation of concerns while still having an integrated
language with static verification. WebDSL applications can
be easily adapted to support a different access control pol-
icy. Information hiding: The details of how and where ac-
cess control is applied is hidden in the semantics of access

184

define page p (~x) { init{ stat* } elem* }

Page: ⇓ rule page p (~x) { e } ⇓

define page p (~x) {
init {

if(e){ stat* }
else { redirect accessDenied(); } }

elem* }

action a (~x) { stat* }

Action: ⇓ rule action a (~x) { e } ⇓

action a (~x) {
if(e){ stat* }
else { redirect accessDenied(); } }

define t (~x) { elem* }

Template: ⇓ rule template t (~x) { e } ⇓

define t (~x) { if(e) { elem* } }

define page p (~x) {
init{ stat1* }
action a (~y) { stat2* }
elem* }

PageAction: ⇓
rule page p (~x) {

e1
rule action a (~y) { e2 } }

⇓

define page p (~x) {
init {

if(e1){ stat1* }
else { redirect accessDenied(); } }

action a (~y) {
if(e2){ stat2* }
else { redirect accessDenied(); } }

elem* }

define t (~x) {
action a (~y) { stat* }
elem* }

TemplateAction: ⇓
rule template t (~x) {

e1
rule action a (~y) { e2 } }

⇓

define t (~x) {
action a (~y) {

if(e1 && e2){ stat* }
else { redirect accessDenied(); } }

if(e1) { elem* } }

navigate(p (~y)) { elem* }

Navigation: ⇓ rule page p (~x) { e } ⇓

if(e’) { navigate(p (~y)) { elem* } }

Figure 14. Weaving transformation rules.

control rules. Consistency: Access control checks are spec-
ified in the same expression language that is used in other
parts of WebDSL applications. Simplicity: one mechanism
can be used to define a wide range of policies. Reusability:
Policy specifications can be reused for other pages and in
other WebDSL applications. Portability: WebDSL access
control is translated to normal WebDSL which is a model

that abstracts from platform specific details.
Another benchmark is the requirements formulated by

Evered and Bögeholz [7] for an ideal access control mecha-
nism based on a case study of a health information system.
Concise: Access control checks in rules simply become the
boolean WebDSL expression that is executed for determin-
ing access. Reuse through predicates limits the amount of
mechanical repetition. Clear: Matching of access control
rules with resources is based on clear semantics and can eas-
ily be verified to be correct. Aspect-oriented: Access con-
trol can be specified separately from the rest of a WebDSL
application, weaving takes care of integration. Fundamen-
tal: All resources that can be protected by WebDSL access
control are denied access by default, this forces the appli-
cation developer to explicitly specify conditions for access.
Positive: The access control rules determine conditions for
allowing access, they are positive authorizations. Need-to-
know: Access control can be used to hide information on
pages, more specifically template contents and navigation
links. Efficient: Because access control is integrated with
the rest of the WebDSL application it can use the same
database interface and caching mechanisms.

Tschantz and Krishnamurti [20] present a set of proper-
ties for examining the reasonability of access control poli-
cies under enlarged requests, policy growth, and policy de-
composition. We discuss their properties for WebDSL ac-
cess control. Deterministic: If the application’s data is con-
sidered part of the policy, then identical requests always re-
sult in the same access control decision. Totality: A deci-
sion to allow or deny is always made. The default to deny
can be caused by a condition evaluating to false, no rule
matching the resource, or an error occuring during check-
ing. Safe: Since WebDSL access control is integrated with
the application it is not possible to make incomplete access
control requests. Independent composition: It is possible
to reason about rules in isolation, combining them will not
change the result of an individual rule. Not monotonic: De-
cisions can change from granting to non-granting by adding
another rule, caused by the single rule combination strategy
of taking the conjunction of matching rules. We believe that
the standard way of combining rules by conjunction is eas-
ier to comprehend than having multiple rule combination
strategies, and it results in a deny overrides strategy that we
consider a safe combination of rules.

Policy Languages The Ponder policy specification lan-
guage [6] is a policy language aimed at specifying access
control for firewalls, operating systems, databases, and Java
programs. The language has many features such as built-in
notions of groups and roles, delegation, obligations (which
specify what a user must do), meta-policies for defining
constraints on the policies themselves (for example SoD).
The paper presents examples of policies to cover the dif-

185

ferent elements available in the language. However, there
is no information on how the policies are enforced in dif-
ferent contexts. This makes it hard to compare the results
of using Ponder to specify policies and our own approach.
Several of the elements available in the Ponder language,
such as delegation, obligations, and policy reuse, are still
open for exploration in WebDSL and provide options for
future work.

XACML (eXtensible Access Control Markup Language)
[13] is a standard that describes both a policy language and
an access control decision request/response language (both
written in XML). A policy is described using rules that
specify conditions for being applicable to a request. The
requests in the request/response language are access control
queries and the responses can be permit, deny, indetermi-
nate (an error occurred) or not applicable (cannot answer
this request). In WebDSL we opted for ’allow’ and ’deny’
as the only results for access requests. XACML rules are
combined in policy sets, and policy sets in a policy, both of
these operations are controlled by selecting a combination
algorithm. In WebDSL access control rules are combined
by using the conjunction of the expressions, rule sets can
be combined in a policy with a boolean expression over the
sets. For finer grained authorization in XACML attributes
are used, these are characteristics of the subject, resource,
action, or environment in which the access request is made.
Most of these attributes have to be specified in the XML
request message when checks are needed. WebDSL access
control is integrated with the WebDSL application, there is
no need for creating requests and explicitly transmitting all
the required data, this avoids any inconsistencies.

Frameworks Acegi [1] is the security component of the
Spring Java web application framework. In keeping with
the Spring approach, Acegi is based on XML configuration
of the framework components. Enforcing access control is
done by an aspect mechanism, these aspects are the compo-
nents that need to be configured to protect either URLs or
specific methods. The weaving occurs when the protected
resource is invoked for the first time. In WebDSL access
control weaving is done statically which allows better error
reporting and compile-time guarantees. In Acegi a secu-
rity context is available where the authenticated user can
be stored together with a collection of granted authoriza-
tion objects, for instance roles. This can be used to spec-
ify RBAC checks in the XML configuration. These checks
are application wide and cannot be further customized with
conditions. An active roles collection as used in the RBAC
example in Section 4 for enforcing the concept of least priv-
ilege has to be managed in the application to work in this
framework. When fine-grained access control is needed,
Acegi offers a DAC policy implementation which protects
generic objects by listing the permissions available for each

user. This is stored in different database tables than the ac-
tual application. The combination of RBAC and DAC has
to be specified in the XML configuration. Fine-grained ac-
cess control must be encoded in the generic DAC policy,
which might involve duplicating information available in
the application such as ownership of an object. WebDSL
provides an integrated way to specify access control, where
policies are combined in the rules, data is integrated with
the application, and accessible for administration.

The Seam Java web application framework [24] offers
a security API for access control. The basic mode is con-
trolled by including restrict annotations in the application
code which verify whether a principal has a certain role
when accessing the annotated Java method or page URL.
A DAC policy can be implemented in a reserved function
that takes the type of the object, the action, and a reference
to the specific object of the access request. This is similar
to the options Acegi has to offer and suffers the same draw-
backs. The advanced mode consists of using JBoss Rules
[24] for determining permissions. This is a logic language
with an inference engine that can deduce permissions from
facts available in the engine. These facts specify the access
control policy. Although JBoss Rules allows separation of
concerns for access control, it is a separate engine which
must be invoked correctly. Any check based on informa-
tion related to data in the application needs to have this data
supplied in the requests. WebDSL access control is inte-
grated with the application and does not have the risk of
inconsistencies between known data during access control
checks and actual data of the application. Besides the in-
tegration issue, the semantics of the rules is not specific to
access control but simply generic JBoss Rules, which pre-
vents any assumptions to be made about the access control
policy (such as the visibility inference in WebDSL).

7 Discussion

Evaluation While WebDSL access control elements are
specified in separate language constructs, the effect requires
integrating with the WebDSL application. The first type of
integration is the use of WebDSL expressions for specify-
ing access control conditions. Besides the expressions, the
data model is also completely accessible for use in checks.
Matching of arguments allows access to all the data relevant
for the type of resource that a rule protects. This data model
integration works the other way around as well, the data
from WebDSL access control is available in the WebDSL
application which provides a simple way to produce ad-
ministration support. The semantics of the access control
rules illustrate that it is a pure WebDSL to WebDSL trans-
formation, which lets WebDSL access control reuse all the
code generation. We observed that it is tempting to add con-
straints in the rules that are not related to access control, but

186

for instance to data validation, which indicates that a bet-
ter mechanism for data validation is needed in WebDSL in
addition to access control.

WebDSL access control encodes policies and can be seen
as a high-level mechanism for access control. The default
access control decision of denying access provides a safe
default and allows an incremental approach when specify-
ing the policy. Section 4 shows that WebDSL access control
is transparent and concise in expressing Mandatory, Discre-
tionary, and Role-Based Access Control and provides good
support for the management of such policies. Besides these
paradigms there is a strong connection with the applica-
tion allowing application-specific customizations to be ex-
pressed easily.

By viewing access control as a proper language element,
it becomes possible to infer related elements from the policy
specification. Assumptions can be made about navigation to
pages and visibility of page elements. This greatly increases
the productivity of application developers and also helps to
make sure the applications produced are consistent. This
is a distinction from using generic aspect mechanisms for
access control, because there the semantic value of access
control rules is lost.

The applications we have build in WebDSL so far are
isolated applications. If the need arises to incorporate a
WebDSL application into a larger system and access con-
trol is going to be handled externally, this would only re-
quire changing the checks in the rules to poll the external
system instead of performing a local check. The separation
of access control rules will help this conversion, and the se-
mantics of access control rules as discussed in this paper are
still applicable. A similar argument can be made for authen-
tication, the user representation and authentication function
can be customized to use an external authentication system.

Future Work Although we have created a flexible lan-
guage for access control, abstractions for common policies
are still possible. Mainly for RBAC, built-in abstractions
can provide a more concise mechanism to support a role
based policy. Separation of duty checks as presented in
the RBAC example in Section 4 could be expressed declar-
atively instead of explicitly specifying where the check
should be enforced.

The access control rules specified in WebDSL are cou-
pled with the presentation of the application, this allows in-
consistencies where similar pages have different rules. Bet-
ter abstraction and encapsulation of entities and their opera-
tions is needed in WebDSL which will allow access control
to protect entities and their specified interface directly and
infer the current type of checks. This would require tracing
the use of these interfaces in pages, but will provide better
consistency verification of the access control policy.

Logging of access control requests/decisions (not just

writing to a text file but integrated logging, persisted like
other application data) is required for doing access con-
trol audits and intruder detection. Adding this to WebDSL
would be a major improvement. An important point here
is that the amount of logging data can easily become un-
wieldy; a specification is needed that determines what in-
formation is stored, how detailed the entries are, and when
they may be deleted or archived.

The DAC policy example presented in Section 4 in-
cluded some facilities for delegation of access control, this
could be specified in a more general way. Several mod-
els have been proposed for delegation [25, 26], which also
shows there is a need for abstracting delegation details from
access control policies. Supporting high level definitions of
access control delegation would be an interesting addition
to WebDSL.

WebDSL does not have support for scheduled operations
yet, which is why we have chosen to ignore time constraints
for now. Temporal policies have been modeled in the liter-
ature [11] and the application of such models would pro-
vide an interesting case for WebDSL access control. We are
investigating the extension of WebDSL with workflow ab-
stractions, which also provides options for exploring access
control policies in that area. This can be compared to other
studies regarding workflow and access control [3].

Digital rights management has been connected to access
control in [14], where a conceptual model for usage control
is presented. Adding this functionality to WebDSL would
provide useful insights in the applicability of such an ap-
proach.

Conclusion The extension of WebDSL with a declarative
access control language provides us with insight in how en-
forcing access control could be done better in general web
applications. Firstly, the use of integrated, access control
specific, aspect-oriented language elements result in a clear
extension of the base language. Secondly, WebDSL access
control shows that various policies can be expressed with
simple constraints, allowing concise and transparent mech-
anisms to be constructed. Finally, the advantage of having a
language element for access control, allowing assumptions
to be made about the related parts in the application. Prac-
tical solutions for access control often consist of libraries or
generic aspect-oriented implementations of fixed policies.
These rarely have clear interfacing capabilities and require
manual extension and integration with the application code.
The extensions and integrations provide room for errors that
possibly invalidate the whole access control policy. The re-
alization that access control as a language element is nec-
essary will provide the means to defeat the errors caused
by encoding policies in application code. Integration of the
language means that language extensions influence the se-
mantics of access control elements. New basic elements and

187

new abstractions require new rule types. Using transforma-
tional semantics, access control rules can be defined clearly
and concisely.

Acknowledgments We would like to thank William Cook
for the discussions on domain-specific language design for
web applications in general and access control in particu-
lar. We would like to thank the other WebDSL developers
Sander van der Burg, Zef Hemel, Jippe Holwerda, Lennart
Kats, Wouter Mouw, and Sander Vermolen for their support
during the creation of the WebDSL access control exten-
sion. This research was supported by NWO/JACQUARD
project 638.001.610, MoDSE: Model-Driven Software Evo-
lution.

References

[1] B. Alex. Acegi Security, Reference Documentation 1.0.7.
http://www.acegisecurity.org/guide/springsecurity.pdf,
2008.

[2] A. Anderson. XACML Profile for Role Based Access Con-
trol (RBAC). OASIS Access Control TC Committee Draft,
1:13, 2004.

[3] E. Bertino, E. Ferrari, and V. Atluri. The specification and
enforcement of authorization constraints in workflow man-
agement systems. ACM Transactions on Information and
System Security, 2(1):65–104, 1999.

[4] M. Bravenboer, E. Dolstra, and E. Visser. Preventing injec-
tion attacks with syntax embeddings. A host and guest lan-
guage independent approach. In J. Lawall, editor, Generative
Programming and Component Engineering (GPCE 2007),
pages 3–12, New York, NY, USA, October 2007. ACM.

[5] M. Bravenboer and E. Visser. Concrete syntax for objects.
Domain-specific language embedding and assimilation with-
out restrictions. In D. C. Schmidt, editor, Object-Oriented
Programing, Systems, Languages, and Applications (OOP-
SLA 2004), pages 365–383, Vancouver, Canada, October
2004. ACM Press.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Pon-
der Policy Specification Language. Policies for Distributed
Systems and Networks: Int. Workshop, Policy 2001, Bristol,
Uk, January 29-31, 2001: Proceedings, 2001.

[7] M. Evered and S. Bögeholz. A case study in access con-
trol requirements for a health information system. In ACSW
Frontiers, pages 53–61, Darlinghurst, Australia, 2004. Aus-
tralian Computer Society, Inc.

[8] D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role-based
Access Control. Artech House, 2003.

[9] R. Johnson et al. Professional Java Development with the
Spring Framework. Wrox Press Birmingham, UK, 2005.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, 2072(327-355):110–121, 2001.

[11] U. Latif. A Generalized Temporal Role-Based Access Con-
trol Model. IEEE Transactions on Knowledge and Data En-
gineering, 17(1):4–23, 2005.

[12] T. Mikkonen and A. Taivalsaari. Web Applications:
Spaghetti Code for the 21st Century. Technical Report TR-
2007-166, Sun Microsystems, June 2007.

[13] T. Moses et al. eXtensible Access Control Markup Language
(XACML) Version 2.0. OASIS Standard, 200502, 2005.

[14] J. Park and R. Sandhu. The UCON ABC Usage Control
Model. ACM Transactions on Information and System Se-
curity, 7(1):128–174, 2004.

[15] P. Samarati and S. D. C. di Vimercati. Access control: Poli-
cies, models, and mechanisms. In Foundations of Secu-
rity Analysis and Design on Foundations of Security Anal-
ysis and Design (FOSAD’00), pages 137–196, London, UK,
2001. Springer-Verlag.

[16] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for
role-based access control: towards a unified standard. Pro-
ceedings of the fifth ACM workshop on Role-based access
control, pages 47–63, 2000.

[17] R. Sandhu and P. Samarati. Access control: principle and
practice. Comm. Magazine, IEEE, 32(9):40–48, 1994.

[18] R. S. Sandhu. Lattice-based access control models. Com-
puter, 26(11):9–19, 1993.

[19] R. S. Sandhu. Role-based access control. In M. Zerkowitz,
editor, Advances in Computers, volume 48. Academic Press,
1998.

[20] M. C. Tschantz and S. Krishnamurthi. Towards reasonability
properties for access-control policy languages. In Proceed-
ings of the eleventh ACM symposium on Access control mod-
els and technologies, pages 160–169, New York, NY, USA,
2006. ACM.

[21] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, September 1997.

[22] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-0.9. In
C. Lengauer et al., editors, Domain-Specific Program Gen-
eration, volume 3016 of Lecture Notes in Computer Science,
pages 216–238. Spinger-Verlag, June 2004.

[23] E. Visser. WebDSL: A case study in domain-specific lan-
guage engineering. In Generative and Transformational
Techniques in Software Engineering (GTTSE 2007), Lecture
Notes in Computer Science. Springer, 2008.

[24] M. Yuan and T. Heute. JBoss Seam: Simplicity and Power
Beyond Java EE. Prentice Hall PTR Upper Saddle River, NJ,
USA, 2007.

[25] L. Zhang, G. J. Ahn, and B. T. Chu. A rule-based framework
for role-based delegation and revocation. ACM Transactions
Information and System Security, 6(3):404–441, 2003.

[26] X. Zhang, S. Oh, and R. Sandhu. PBDM: a flexible delega-
tion model in RBAC. Proceedings of the eighth ACM sym-
posium on Access control models and technologies, pages
149–157, 2003.

188

