
Designing Rich Internet Applications Combining UWE and RUX-Method

Juan Carlos Preciado, Marino Linaje,
Rober Morales-Chaparro, Fernando

Sanchez-Figueroa
Quercus SEG. Universidad de Extremadura

{jcpreciado, mlinaje}@unex.es

Gefei Zhang1, Christian Kroiß1,
Nora Koch1,2

Web Engineering Group
1Ludwig-Maximilians-Universität München

2Cirquent GmbH
{zhangg,kroiss,kochn}@pst.ifi.lmu.de

Abstract

The rapidly increasing importance of Rich Internet
Applications (RIAs) calls for systematic RIA devel-
opment methods. However, most current Web engi-
neering methods focus on Web 1.0 applications only;
RIAs, on the contrary, are still developed in an ad-hoc
manner, which often results in error-prone and hard-
to-maintain products. We propose a model-driven ap-
proach to RIA development by combining the UML-
based Web Engineering (UWE) method for data and
business logic modeling with the RUX-Method for the
user interface modeling of RIAs.

1. Introduction

One of the most exciting recent movements of Web
applications is the trend towards Rich Internet Appli-
cations (RIAs). RIAs introduce features and func-
tionality of traditional desktop applications like anima-
tions and client-side computing to Web applications.
The advantages of such Web applications include com-
plex user interactions and the overcoming of page-
loading requirements of traditional Web 1.0 ap-
plications. Enterprises are rapidly adopting Web 2.0
features like RIAs as they see high business value in
the innovation [2] [9]. However, there is still a lack of
engineering methods for RIAs [11]. Most current Web
engineering methods consider only Web-1.0 features.
Consequently, RIAs still have to be developed in an
ad-hoc manner. The inadequateness of abstraction and
documentation makes them error-prone and hard–to-
maintain. We propose to address this problem by com-
bining the UML-based Web Engineering approach
(UWE) [4] [5] with the RUX-Method [7] for the devel-
opment of RIAs.

UWE provides a domain specific notation for the
graphical representation of Web applications and a
method for the model-driven development of Web
systems. The RUX-Method is a model-driven approach
to modeling the User Interface (UI) of RIAs. It may be
used on top of any Web engineering method. The

RUX-Method replaces the original presentation model
by a new RIA one. In our approach, UWE is used to
specify the content, navigation and business processes
of the Web application, and the RUX-Method is used
on top of these models to add typical rich UI cap-
abilities, such as temporal behavior and rich user inter-
actions. We build the bridge between both approaches
defining transformation rules between their meta-
models.

While the RUX-Method has already been combined
with WebML [12], the novel idea presented in this
paper is the extension of the generation rules of the
underlying method (UWE) in order to obtain the con-
nection with the RUX-Method automatically. The con-
nection provides the mechanisms needed to generate
the UI step by step. Furthermore, our approach is to the
authors’ knowledge the first one for the development
of RIAs including business processes.

The rest of this paper is structured as follows:
Section 2 summarizes the background of the proposal
using a running example. Section 3 presents the con-
nection between UWE and the RUX-Method. Section
4 shows related work, and finally, we outline some
future work in Section 5.

2. Background

In this section we present briefly UWE and the
RUX-Method by an example. Consider a simple Web
database of movies, which provides the information of
a collection of movies (see Figure 1). The user can
browse to the detailed information about a movie
through an index, add a new movie to the database, or
remove a selected movie from the database.

2.1. UWE in Brief

UML-based Web Engineering (UWE [4]) is a
method for systematic and model-driven development
of Web applications. UWE follows the principle of
“separation of concerns” by modeling the content, the
navigation structure, the business processes, and the

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.26

148

presentation of a Web application separately. UWE
implements a model-driven development process by
defining model transformations of different types to
derive platform specific models from platform inde-
pendent models and to generate running programs [6].

Figure 1. Example: online movie database

UWE’s outstanding feature is its reliance on stand-
ards: its modeling language is defined by an extension
of the Unified Modeling Language metamodel (UML
2.0 [10]) and mapped to a so-called UML profile; its
transformations are defined in (on coming) standard
transformation languages like QVT [10] or ATL [1].

The UWE design process starts with a requirements
model that comprises use cases, discerning
navigational from business process use cases. The
requirements model of our example includes a
«navigation» use case for browsing the movie database
and standard use cases for adding and removing
movies. The content model in UWE – represented by a
normal UML class diagram – provides a specification
of the domain-relevant information for the Web soft-
ware. The content model of the movie database
contains movies that are organized in movie col-
lections. Movie collections are characterized by some
genres. Each movie has a title, a description, some
photo, a genre, and a release year. The classes
MovieCollection and Movie include methods for adding
a movie to or removing a movie from a movie collec-
tion.

Based on the requirements and the content model,
the navigation model of the Web application is built to
specify the hypertext structure of the system, which is
given by nodes and links. Classes with stereotype
«navigation class» (like MovieCollection or Movie in
Figure 2) represent navigable nodes for information re-
trieval; «process class»es (like AddMovie and Remove-
Movie) define navigation nodes where transactions may
occur. Direct links are modeled by associations; in
particular, «process link» stereotyped associations lead
to or leave from process classes.

Some special navigation nodes are used to organize
links. For example, several instances of a navigation
class are reached by an «index» (like MovieIndex) and
choices of links are represented by «menu»s (like
MovieCollectionMenu). In our movie database, users
can navigate from the movie collection via an index of
the movies to view the information of a selected movie
or, along another navigation path, add or remove some
movie to or from the database (Figure 2).

Figure 2. UWE: navigation model of the example

Each process class in the navigation model is re-
fined by a process structure model in the form of a
class diagram, defining additional classes used in the
process, and a process flow model in the form of a
UML activity diagram, modeling the data and control
flow of the process. In particular, «user action» stereo-
typed actions indicate input from the user of the Web
application.

Figure 3. UWE: presentation model (excerpt)

The presentation model provides an abstract view of
the Web-1.0 user interface (UI), where concrete
aspects of the UI, such as colors and fonts of UI
elements are not considered. For each navigation class,
a «presentation class» models its presentation. UI
elements, such as «text»s, «image»s etc., contained in
presentation classes indicate the abstract type of the
widgets to use.

Presentation classes can be nested, modeling the
hierarchical structural of Web pages. A presentation
class that is not contained in another represents a top-
level page of the Web application. In addition, a pre-
sentation class is defined for each user action. The pre-

149

sentation model therefore has the form of a forest of
presentation classes. An excerpt of the presentation
model for the movie database is given in Figure 3.

2.2. RUX-Method in Brief

The RUX-Method (Figure 4) is a model-driven
method for the systematic specification of multi-device
and interactive multimedia Web UIs. The method can
be combined with other Web methods which model the
data and business logic of the Web application.

Figure 4. Overview on the RUX-Method

The RUX-Method distinguishes three different in-
terface levels providing a conceptual chain of refine-
ment [3][7]: abstract interface, concrete interface and
final interface. Abstract interface provides a UI repre-
sentation common to all RIA devices and development
platforms, without any kind of spatial, look and feel or
behavior dependencies. Since this interface is the most
important in the context of this work more details will
be given in Section 3.2. The concrete interface is
platform independent but specific for a device or group
of devices. It is divided into three presentation levels:
spatial, temporal and interaction presentation.

Since the abstract interface provides a first draft of
components grouping, in the spatial presentation the
modeler simply needs to refine this grouping, specify
the spatial arrangement of components, and define
their dimensions and look and feel. The temporal pre-
sentation allows the specification of behavior which re-
quires a temporal synchronization (e.g. animations).
The interaction presentation allows the specification of
the user’s behavior with the RIA UI. In RIAs, cap-
turing the user interaction with the UI is generally
carried out by the application components that are able
to capture certain event types.

The final interface contains the information for the
UI code generation which is specific for a device or a
group of devices and for a RIA development platform
such as FLEX, Ajax or Laszlo.

In accordance to the three interface levels, there are
also three transformation phases in the RUX- Method.
The first transformation phase catches and adapts the
data and business logic specified in the underlying
(Web-1.0) models to the RUX-Method abstract inter-

face, and is called connection rules (marked as CR in
Figure 4). The abstract interface is adapted in the
second transformation phase to one or more particular
devices and grants access to the business logic. This
phase is called transformation rules 1 (marked as TR1
in the Figure). Finally, in transformation rules 2
(marked as TR2 in the Figure) the MDA life-cycle of
the RUX-Method is completed by code generation.

These transformations are based on a component
library (see Figure 4). Each RUX-Method interface
level is composed by interface components whose
specifications are stored in the library. The library also
allows the RUX-Method to keep the definition of
several target platforms in a single XML document, as
well as the translation of an origin component to one or
more target platforms. For example, for the final
interface, each component in the library is defined for
different rich rendering platforms.

Once the abstract interface is obtained by applying
the CRs to the underlying Web model, further refine-
ments towards concrete interface and final interface
can be made, so that finally a RIA implementing the
same functionality but providing a much better user
friendly UI can be generated.

3. Connection of UWE and RUX-Method

The model-driven nature of UWE and RUX-
Method makes it straight-forward to extend the gene-
ration rules of UWE to obtain the CRs’ specification
automatically; separating presentation from other
aspects of Web applications like content and navi-
gation structure allows us to localize these extensions,
instead of having to change the Web-1.0 UWE models
ubiquitously.

3.1. Metamodel-based Generation of Web
Applications in UWE

UWE’s generation process is metamodel-based: it
considers UWE models as instances of the UWE meta-
model, which is an extension of the UML metamodel,
and maps them to instances of platform-specific meta-
models, from which running code is generated. In par-
ticular, the classes in the content model are imple-
mented either as Java Beans or by RMI; the presenta-
tion classes are transformed to Java Server Pages
(JSPs); information contained in the navigation model
is transformed to configuration files of the generated
application. Process models are not transformed, but
directly executed by means of the Spring framework1
by the runtime environment.

1 www.springframework.org

150

Figure 5. UWE metamodel: presentation package
(excerpt)

Figure 6. JSP metamodel [6]

For example, the rule below specifies the trans-
formation of presentation models (metamodel given in
Figure 5) to JSP models (metamodel in Figure 6): each
“top-level” presentation class (that is, each presentation
class that is not included in another) is mapped to a
Root element (of a JSP document), implementing the
outer structure of an HTML page; the presentation
classes contained in the top-level presentation class are
mapped recursively to UI elements contained in the
body of the JSP.

rule PresentationClass2JSP {
 from
 pc : UWE!PresentationClass (pc.isTopLevelPC())
 to
 jsp : JSP!Root(documentName <- pc.name + '.jsp',
 children <- Sequence{ htmlNode }),
 htmlNode : JSP!Element(name <- 'html',
 children <- Sequence{ headNode, bodyNode }),
 headNode : JSP!Element(name <- 'head',
 children <- Sequence{ titleNode }),
 titleNode : JSP!Element(name <- 'title',
 children <- Sequence{ titleTextNode }),
 titleTextNode : JSP!TextNode(value <- pc.name),
 bodyNode : JSP!Element(name <- 'body',
 children <- pc.ownedAttribute->collect(p | p.type))
}

The helper function istopLevelPC() determines if a

presentation class is a top-level one. Its specification is
as follows:

helper context UWE!PresentationClass def :
isTopLevelPC() : Boolean =
 not UWE!PresentationClass.allInstances()->

exists(pc | pc.ownedAttribute->
exists(p | p.type = self));

3.2. RUX-Method Abstract Interface Design

The RUX-Method abstract interface is composed of
three different kinds of elements: connectors, media
and views.
• Connectors are used to establish the relation be-

tween the UI component and the data represented in
the content model;

• Media elements represent device-independent atom-
ic UI information. They are categorized into discrete
media (texts and images) and continuous media
(videos, audios and animations);

• Views are used to group the information that will be
shown in the UI. The RUX-Method distinguishes
four different types of containers: simple, alterna-
tive, replicate and hierarchical Views.

Figure 7. RUX-Method Abstract I. metamodel

In the RUX-Method, the root element of the abstract
interface is always a View. When View type is Simple
it may contain other Views and/or Media elements.
Alternative, replicate and hierarchical views cannot
contain Media elements.

An alternative View indicates that only one of the
views that it contains will be shown at the same time to
the user (e.g. Tab panels). The replicate View deter-
mines other Views that are going to be repeated
throughout the View that contains it (e.g. list of
elements). The hierarchical View represents elements
in a tree view (e.g. a set of categories and sub-cate-
gories). The metamodel of the RUX-Method abstract
interface is given in Figure 7.

3.3. Connecting RUX-Method with UWE

The CRs connecting UWE and the RUX-Method
must filter the information presented in UWE and
extract the information needed to build the abstract
interface and to trigger the business logic rightly. As
we will show, the UWE presentation model is enough
for both issues.

151

From the UWE presentation model, the CRs extract
the relationship among UI elements and their composi-
tion hierarchy, distinguishing between contents and
containers, identifying the Media elements and
grouping the containers using the options according to
the RUX abstract interface metamodel.

In the following, the information extraction and pro-
pagation from UWE to the RUX-Method is described
in more detail. We also show how this process can be
automated by extending the ATL generation rules of
UWE.

I. Extracting the Hierarchy of Composition from
UWE Models

This process is described below using pseudo-code,
organized in two steps. The first step creates an empty
RUX-Method abstract interface (marked as in Figure
8). In the second step, each UWE «presentation class»
and the UI elements that it contains are then added
recursively as children to this SimpleView (and).

Start
Create a SimpleView as the root element.
For each p, p is of type «presentation class», «text» or «image» contained
in the presentation model

Create a SimpleView V inside the last view we have created from the
p.parent, or inside the root if p has no parents.
If p is a «presentation» node:

Create a Connector that references to p inside V
If p has relationships with a multiplicity of..* (unbounded) at the
children role

Create a Replicate View R inside V, in order to use the R as
the parent for the results of applying CR to p's children

ElseIf p is a «text», «image», «anchor», etc. node:
Create a Media inside V.
Connect the Media with the Connector created from p.parent.
Select the type of Media conveniently (direct since UWE and the
RUX-Method support the same types of media).
Specifically indicate which attribute of the Connector use the
Media. This can not be inferred so it is required because there is
only one Connector for every UWE <<presentation>> node, and it
has usually more than one attribute.

EndIf
End

II. Collecting all Operation Links or Operation
Chains

Once the abstract interface has been specified and
TR1 have been applied, the RUX-Method concrete
interface allows modeling according to the device
specific capabilities.

As depicted in Figure 8 (marked as), the CRs also
retrieve and propagate to the concrete interface the
information required to build a List of Useful Links
(LUL) according to the different kinds of actions

defined in the RUX model, (e.g. UIActions or
CallActions) [7]. Since UWE models Web 1.0 app-
lications, the elements contained in the LUL of UWE
are all CallActions, which model simple user
interaction like mouse clicks to follow a hypertext link.
So LUL consists of the «navigation link»s and «process
link»s in the UWE navigation model, as well as the
links in the process flow model leading to and leaving
from «user action»s.

When the RUX-Method applies the TR1 to get the
concrete interface from abstract interface, we need to
take into account the information offered by UWE re-
garding operation chains. The algorithm is as follows:

For each LINK (“L”) listed in LUL

Create a handler with name “L”
Add a CallAction to reference “L”

For each Media “M” in the abstract interface:
Add a listener for every output “M” (RUX-Method Media elements
can be for input purposes e.g. combobox or for output e.g. label),
called O
For each listener O

Set the handler descriptor to be the same as created
before.
Connect with the first event defined in the component
library (default event) for the component (usually, click)

III. ATL Rules of the Connection
Since the transformations in UWE (see Sect. 3.1)

are first-class citizens and therefore can be modified or
extended to meet new requirements, it is straight-
forward to include the connection with the RUX-
Method designs as described above into the UWE
generation process. Generating the RUX-Method
abstract interface model from UWE presentation model
automatically reduces the cost of the connection
greatly by avoiding many easily made errors when
doing it manually. For instance, the following
(simplified) transformation generates for each top-level
presentation class in UWE a simple view in the RUX-
Method.

rule PresentationClass2SimpleView {
 from

 pc : UWE!PresentationClass (pc.isTopLevelPC())
 to

 sv : RUX!SimpleView(
children <- pc.ownedAttribute->select(p |

p.type.oclIsKindOf(UWE!PresentationClass
)),

media <- pc.ownedAttribute->select(p |
p.type.oclIsKindOf(UWE!UIElement))

}

152

Figure 8. The connection process for the running

3.4. The Running Example

Figure 8 depicts some of the design phases for our
running example. Note that CRs contain information
from UWE presentation models to design a rich user
interface for it.

In the center of Figure 8, the relationship between
UWE models and the RUX-Method abstract interface
is depicted, showing these CRs graphically (marked as

, , , and). This figure also depicts the propaga-
tion to extract the list of links to trigger the business
logic (marked as). The resulting abstract interface of
the example built with the RUX-Method is shown on
the right side where different types of Views and Media
are depicted, as well as Connectors (e.g. the one marked
as).

For our movie database example, Figure 8 shows
how the CRs have placed an alternative root view con-
taining a SimpleView for each presentation class of
UWE presentation root level. In this example, these
SimpleViews are related with MovieCollection, Add-
MovieInput, RemoveMovieInput and Movie, using the
same names which have been automatically obtained
(e.g.,). Many of the abstract interface groupings have
also a Connector in which the relationship between the
UWE presentation model and the RUX-Method is
specified.

Afterwards, for every one of these presentation
classes, the content placed in this kind of containers
will be processed using the extracted UWE presenta-
tion elements through the connection process (e.g., ,

 and). In the Figure, the arrow shows how the

«text input» Description of the presentation class
AddMovieInput is represented by means of a text Media
inside the Description SimpleView (and so on for the
rest of the Media as the one marked as). Finally, also
the relations between Media and Connectors are
available to store the specification of which attribute of
the connector each media is connected to. Using the
direction of the arrows, this relationship also provides
the specification if it is an output (the relation is from
the Media to the Connector –e.g. in the AddMovieInput
SimpleView) or an input Media (Connector to Media –
e.g. in the Movie SimpleView).

4. Related Work

In [11] the problems of the different methodologies
from Web and Multimedia fields when considering
RIAs are shown. The work in [8] proposes a first draft
of a model driven method for designing graphical user
interfaces in RIAs decomposing the presentation
design into several abstraction levels. The method is
based on XSL model transformations.

Toffetti et al. propose in [13] the modeling of dis-
tributed events in data-intensive RIAs. They show how
events can be explicitly described and coupled to the
other concepts of a Web modeling language in order to
specify collaborative RIAs. They apply these concepts
to WebML. Issues related to behavior, single-page
paradigm and content composition are treated in [14].
This work conceptually extends the method OOHDM
for modeling RIAs supporting very abstract spe-

153

cification of RIA user interface. Platform specific
generation is not considered.

Our proposal supports the development of business
process driven RIAs. We demonstrated that, by ex-
tending the generation rules of UWE, it is possible to
obtain automatically the connection rules of the RUX-
Method, which makes it an easy task to adapt the user
interfaces of Web 1.0 applications modeled in UWE to
multi-device RIA UIs.

5. Conclusions and Future Work

We have presented a model-driven approach to RIA
development by connecting UWE and the RUX-
Method. UWE is more appropriate for modeling the
functionalities, i.e. data and business logic, of Web
applications; the RUX-Method is applicable for de-
signing the RIA user interface. Our approach provides
a simple way to enrich Web 1.0 applications with
Web 2.0 look and feel. Connection rules are
formulated in the ATL language and thus the con-
nection can be established, i.e., a RUX abstract inter-
face can be created, automatically. Our approach con-
siders both static navigation and dynamic business pro-
cess.

Our future work includes enhancing this approach
by including RIA specific operations, such as auto-
matic completion of input fields or client side
computing, that are not possible in Web 1.0 and thus
not considered by the current Web (1.0) engineering
methods. We plan to extend the RUX-Method by
model elements, which, e.g., represent the client
sending requests to the server in the background or
carrying out some operation, and to extend UWE by
model elements which represent the corresponding
server operations. The planned extensions in both
methods as well as their connection are expected to be
straightforward.

Another important issue in RIA engineering is
requirements engineering. We plan to extend the UWE
requirements description techniques to include RIA
features like animation, asynchronous client server
communication, client side computing, etc.

Acknowledgments.

This research has been partially supported by the
following projects: MAEWA (WI841/7-1) of the DFG,
Germany, the EC 6th Framework project SENSORIA
(IST 016004), and the Spanish Government project
TIN2005-09405-C02-02.

6. References

1. ATLAS Transformation Language and Tool,

http://www.eclipse.org/m2m/atl/doc/
2. Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi,

G.: Conceptual Modeling and Code Generation for Rich
Internet Applications. In Proc. of the 6th Int. Conf. on
Web Engineering, pp. 353-360, ACM (2006)

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J.: A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computers, vol. 15, no. 3, pp. 289-308 (2003)

4. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-
Based Web Engineering: An Approach Based on
Standards. In Web Engineering: Modelling and
Implementing Web Applications, HCI Series, vol. 12,
chapter 7, pp 157-191, Springer-Verlag (2007)

5. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration
of Business Processes in Web Application Models.
Journal of Web Engineering, vol.3 pp. 22-49 (2004)

6. Kraus, A.: Model Driven Software Engineering for Web
Applications. PhD. Thesis. LMU München (2007)

7. Linaje, M.; Preciado, J.C.; Sánchez-Figueroa, F.: Engi-
neering Rich Internet Application User Interfaces over
Legacy Web Models. Internet Computing Magazine,
IEEE, vol.11, no.6, pp.53-59 (2007)

8. Martínez-Ruiz, F.J., Muñoz Arteaga, J., Vanderdonckt,
J., González-Calleros, J.M.: A First Draft of a Model-
driven Method for Designing Graphical User Interfaces
of Rich Internet Applications, In Proc. of the 4th Latin
American Web Congress, pp. 32-38, IEEE (2006)

9. Murugesan, S.: Understanding Web 2.0. IT Professional
Journal, vol.9, no.4, pp.34-41 (2007)

10. OMG, http://www.omg.org

11. Preciado, J.C., Linaje, M., Sánchez-Figueroa, F., Comai,
S.: Necessity of Methodologies to Model Rich Internet
Applications, In Proc. of the 7th IEEE Int. Symp. on Web
Site Evolution, pp. 7-13, IEEE (2005)

12. Preciado, J.C., Linaje, M., Sánchez-Figueroa, F.: An
Approach to Support the Web User Interfaces Evolution.
In Proc. of the 2nd Int. Workshop on Adaptation and
Evolution in Web Systems Engineering, ICWE, pp. 94-
100 (2007)

13. Toffetti, Carughi G., Comai, S., Bozzon A., Fraternali,
P.: Modeling Distributed Events in Data-Intensive Rich
Internet Applications, In Proc. of the 7th Int. Conf. on
Web Information Systems Engineering, LNCS 4607, pp.
593-602, Springer-Verlag (2007)

14. Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.:
Designing the Interface of Rich Internet Applications. In
Proc. of the 5th Latin American Web Congress, pp.144-
153, IEEE (2007)

154

