
Security Policy Composition for Composite Services

Fumiko Satoh†1,2
†1IBM Tokyo Research Laboratory,

1623-14 Shimo-tsuruma, Yamato-shi,
Kanagawa, 242-8502, Japan

sfumiko@jp.ibm.com

Takehiro Tokuda†2

†2Department of Computer Science,
Tokyo Institute of Technology,

Meguro, Tokyo, 152-8552, Japan
{sfumiko, tokuda}@tt.cs.titech.ac.jp

Abstract

An application based Service-Oriented Architecture

(SOA) consists of an assembly of external services and
the application is called as a composite service. A
composite service could be implemented by other
composite services hence the application could have a
recursive structure, which is one of the features of SOA
application. Securing an SOA application is an
important non-functional requirement. However,
specifying a security policy of a composite service is
not so easy because the policy should keep the
consistency with other policies of external services
which are invoked in the process. We need the way to
assure the consistency of policies, but the concrete way
is not developed yet to specify a consistent policy for a
composite service. Therefore, this paper proposes a
security policy composition mechanism from existing
policies of external services. Our contribution is
creating a security policy of a composite service
automatically based on predicate logic, with support
for two approaches of policy composition: bottom-up
and top-down. Also, we focus on three kinds of security
policies, such as a Data Protection Policy, an Access
Control Policy, and a Composite Process Policy, and
propose the policy composition rules for each policy.
Our mechanism makes it possible to validate the
consistency of policies by inference without increasing
a developer’s workload, even if a composite service
has a recursive structure.

1. Introduction

Service-Oriented Architecture (SOA) is a concept of
building applications by assembling services that are
components of business functions. Typically, an SOA
application is implemented as a composite service that
invokes external services in the process. The process
and service invocations are defined in a process

language such as BPEL [1], and a user can rebuild an
application by changing only the process definitions
without updating the service implementations. The
benefit of an SOA application is flexibility to adapt to
changing business processes.

SOA is convenient for satisfying functional
requirements, but it is more difficult to satisfy the non-
functional requirements such as security. The security
requirements are specified as security policies for a
composite service, but actually the way to specify
policies for the composite services is not discussed
clearly. For example, when an application developer
assembles existing services that have their own security
policies, how can the composite policies be defined and
assured so that there are no inconsistencies with those
existing policies? Also, there are several kinds of
security policies, such as for data protection and for
access control, and hence we need to compose these
policies separately to create policies for a composite
service. Currently, a developer needs to define the
composite policies by hand by referring to the policies
of the external services invoked in the composite
process. However it is very hard to complete a policy
composition without any inconsistency, because the
process definitions and security policies may be
complex and it is not clear how to compose policies to
maintain consistency.

We propose a security policy composition
mechanism to resolve these difficulties. Our approach
is based on predicate logic, and generates a composite
security policy by inference. We define the logic for
the policy representation and composition process, and
clarify the policy composition rules. In this paper, three
kinds of security policies are discussed: Data
Protection Policies, Access Control Policies, and
Composite Process Policies. The composite process
definitions written in BPEL and security policies
written in WS-SecurityPolicy [2] are transformed into a
logic representation, and they are executed as a prolog

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.23

86

program to infer a security policy for the process.
Our mechanism can apply two approaches to

generate a composite security policy: bottom-up or top-
down. The bottom-up policy composition can compose
policies from existing policies for external services,
and the consistent composite policies are generated by
inference. In contrast, a developer can specify
composite policies regardless of existing policies. Our
mechanism verifies the specified security policies are
consistent with the existing policies, and the developer
can confirm that the specified composite policy will
work properly. Our main contributions are the
automatic composition and verification of security
policies from existing XML representations while
reducing the developer’s workload.

The rest of this paper is organized as follows.
Section 2 explains the motivating example of our study
and clarifies the problems with policies for composite
services. Section 3 provides definitions of composite
services and their security policies. We propose our
security policy composition architecture and
composition rules in Section 4. The policy composition
is demonstrated in Section 5. Section 6 provides related
work and we conclude our study in Section 7.

2. Motivating Example

2.1. Scenario: Travel Reservation Service

First, we explain the application scenario which
motivated us to clarify the problem. The travel
reservation service shown in Figure 1 is a composite
service that consists of the process invoking the airline
reservation service and the hotel reservation service,
which are external services. These external services are
invoked symmetrically in the process of the travel
reservation. The external services could be also
composite services which invokes other external
services.

Here we suppose that the travel reservation service
must be secure. A security policy will be necessary
such that the exchanged messages should be signed and
encrypted, only an employee of the travel agency can
invoke the service, and so on. However, both the airline
reservation service and the hotel reservation service
might have their own security polices. In this situation,
to define a security policy for the composite service in
a bottom-up way, the composite security policy and the
external security policies should be consistent. This
means that the policies of external services will also be
satisfied as long as the composite policy is satisfied. In
contrast to the bottom-up approach, we could define a
composite security policy in a top-down approach. If a

composite service developer assembles some existing
services which have their own policies, then the
developer could define a new policy for the overall
composite service. In this top-down policy definition, it
is not clear how we could validate if all of the security
policies of the composite service and the invoked
external services are consistent.

The goal of this study is to provide a way to
compose security policies for a composite service, so
that the policies have no inconsistencies from either the
bottom-up or the top-down perspective. In the next
section, we clarify some possible inconsistencies in
security policies that should be addressed by this work.

2.2. Problems of Security Policies in
Composite Processes

We define three categories of security policies to
focus on this study: (1) Data Protection Policies (DPP),
(2) Access Control Policies (ACP), and (3) Composite
Process Policies (CPP).

A DPP is a security policy specifying how to protect
exchanged data, i.e. data of “username” type should be
signed and encrypted. An ACP defines which role has
authority to invoke a service. The CPP is a special
policy defined when services are assembled as a
composite service. For example, a service developer
could apply a constraint such as service A and service
B should be executed by users who have different roles.
The details of these policies are defined in Section 3.2,
but here we explain the possible problems for these
security policies.

The problems for a composite security policy are
the inconsistencies between a composite service policy

Figure 1. Composite Service Example:
Travel Reservation Service

Invoke

Invoke

Reply

Receive

Travel
Reservation

(TR)

Airline
Reservation

(AR)

Hotel
Reservation

(HR)

Policy for AR

Policy for HR

Composite
service

Composite
service
process

Invoked
external
services

Policy for TR Composite
service policy

Request for TR

Response from TR

Existing
Policies

87

and invoked external service policies. We clarify the
inconsistencies to be resolved for each policy as
follows:
¾ DPP

Data may be unprotected or less protected in a
composite service even if the same data would need
high protection in external services.

¾ ACP
If the external services specify authorized roles who
can invoke the service, then those policies should
be preserved in the composite service policy. For
example, we cannot execute the composite service
if the external service allows the user who has a
roleA, but the composite service does not allow the
user of roleA.

¾ CPP
If a CPP requires that external service A and
service B should be executed by the separate roles,
but these external services allow the same roles in
both ACP of service A and service B, so these ACP
are not conformed to the CPP.
These inconsistencies of a composite service policy

and external service policies would be common, and
they seem to be resolved easy by a developer. However,
if the external services that are invoked in the
composite service process are implemented by other
composite services, the problems are not easy. A
developer should analyze the policies of external
services recursively, and then resolve the
inconsistencies manually by referring these policies. It
is so hard to resolve them correctly because the
composite service structure and policies might be
complex and a developer could not be a security expert.

We propose a logic-based approach to resolve these
problems and provide a way to create consistent
security policies for a composite service. We define
logic of the policies, processes, and rules for policy
compositions. This logic can be executed as a Prolog
program, and the inference will provide the result if
any inconsistencies exist in a composite service policy.
Also, the inferences can lead to a correct policy if there
are any inconsistencies in the process.

3. Security Policies for Composite Services

3.1. Composite Service Definition

A composite service process which invokes external
services can be represented using BPEL [1]. BPEL has
great flexibility to express complicated invocations or
conditions, so we focus on a typical process to simplify
our presentation. Figure 2 shows a typical composite
process expressed in BPEL representation and a

corresponding diagram generated by the tool such as
eclipse of BPEL project [4] or WebSphere Integration
Developer [5]. The composite service process has both
receive and reply actions. The incoming parameters are
received at receive, and the outgoing parameters are
returned at reply. Here we assume that the external
services are invoked by symmetric invocation in the
composite process. In this case, when a process invokes
an external service, the process will not go on to the
next action until it has received the response
parameters from the external service. This kinds of
invocation is represented using invoke actions.

An assign action specifies copying a variable from a
variable specified by a from element into a variable
specified by a to element. Figure 2 has an assign action
to copy from the result value of airlineResponse which
is a response message of the airline reservation service,
to the airlineReservationResult value of
agencyResponse which is a response message of the
travel reservation service. Here only one example of a
variable assignment is shown, and Table 1 shows all of
the services’ variables and variable assignments
executed in the travel reservation service. The request
variables of the travel reservation service are assigned
to the request variables of the external services, and
then the two external services, airline reservation
service and hotel reservation service each return a true
as a result value when the reservation succeeds. The
result values are assigned to the response variables of
the travel reservation service and returned to the client
by the reply action.

This process is a typical composite process in BPEL.
In this study, we focus on this process that mainly
involves these actions: receive, invoke, reply, and
assign. The relations between the composite service
variables and the external service variables are defined
by assign actions as shown in Figure 2, and these
relations are leveraged to create the security policies. In
the next section, the three types of security policies we
discuss in this study are explained.

Table 1. Variable Assignments of Travel
Reservation Process

hotelResultTravel
ResponseresultHotel

Response

airlineResultTravel
ResponseresultAirline

Response

customerID
hotelInfo
cardInfo

Hotel
Request

customerID
hotelInfo
cardInfo

Travel
Request

mileageNo
airlineInfo
cardInfo

Airline
Request

mileageNo
airlineInfo
cardInfo

Travel
Request

VariablesMessageVariablesMessage

ToFrom

hotelResultTravel
ResponseresultHotel

Response

airlineResultTravel
ResponseresultAirline

Response

customerID
hotelInfo
cardInfo

Hotel
Request

customerID
hotelInfo
cardInfo

Travel
Request

mileageNo
airlineInfo
cardInfo

Airline
Request

mileageNo
airlineInfo
cardInfo

Travel
Request

VariablesMessageVariablesMessage

ToFrom

88

3.2. Security Policy Types

Here we define the security requirements that are
discussed in this study, and specify the security policies
for these security requirements. An SOA application
consists of assemblies of services, and there are two
types of services: an atomic service and a composite
service. An atomic service is a service which does not
invoke external services in the process. A composite
service invokes external services in the process, and
also consists of service assemblies. Here we classify
the security policies in these types of services.

A security policy for an atomic service is classified
as a Data Protection Policy (DPP) and an Access
Control Policy (ACP). The security policies for a
composite service consist of a composite DPP and
ACP of the atomic services, and a Composite Process

Policy (CPP). A CPP has special requirements for a
series of services in the composite process. Figure 3
shows the security policy classification of atomic
services and composite services. The following
sections explain details of these security policies.

3.2.1 Data Protection Policy. The Data Protection
Policy (DPP) describes data protection, such as
integrity or confidentiality, during message exchanges.
Web Services Security (WS-Security) [3] can protect
the messages exchanged between clients and providers

Security Policies for Atomic Services
Composite Process

Policy (CPP)
Data Protection Policy

(DPP)
Access Control Policy

(ACP)

Security Policies for Composite Services

Figure 3. Security Policy Classification

Figure 2. A Travel Reservation Composite Process in BPEL

<bpws:process ..>
…………….
<bpws:sequence name="Sequence">

<bpws:receive name="Receive"
operation="getReservation"
partnerLink="AgencyProcessInterface"
portType="ns0:AgencyProcessInterface"
variable="agencyRequest"/>

<bpws:flow name="ParallelActivities">
…

<bpws:invoke name="AirlineReservation"
operation="reserveAirline"
inputVariable="airlineRequest"
outputVariable="airlineResponse"
partnerLink="AirlineProcessInterfacePartner"
portType="ns1:AirlineProcessInterface">

</bpws:invoke>
…………..
<bpws:assign name="CopyAirlineResult">

….
<bpws:copy>
<bpws:from part="reserveAirlineResult"

variable=“airlineResponse">
<bpws:query

queryLanguage=".../REC-xpath- 19991116">
<![CDATA[/result]]></bpws:query>

</bpws:from>
<bpws:to part="getReservationResult"

variable="agencyResponse">
<bpws:query
queryLanguage=".../REC-xpath-19991116">

<![CDATA[/airlineReservationResult]]>
</bpws:query>

</bpws:to>
</bpws:copy>
</bpws:assign>
…..
<bpws:reply name="Reply" operation="getReservation"

partnerLink="AgencyProcessInterface"
portType="ns0:AgencyProcessInterface"
variable="agencyResponse">

…
</bpws:reply>

…
</bpws:flow>

</bpws:sequence>
</bpws:process>

89

by using XML signature or XML encryption. Web
Services Security Policy (WS-SecurityPolicy) [2] is a
specification to express security policies for WS-
Security. Web Services is a typical technology to
implement a service invocation, and therefore we
assume that a DPP is a security policy written in WS-
SecurityPolicy.

 Figure 4 is an example of the DPP written in WS-
SecurityPolicy. The security policy represents security
requirements using a set of assertions which are XML
elements to specific security properties. For example,
SignedParts element is one of security policy
assertions for specifying the signed portion in the
SOAP message.

This policy requires a signature and encryption on a
SOAP Body by using an X.509 certificate. The signed
and encrypted portions in the SOAP message are
specified by the SignedParts and EncryptedParts
assertions, and these elements have a Body element in
this example. In WS-SecurityPolicy, sets of algorithms
are defined as algorithm suites assertions. This example
specifies the Basic256 algorithm suite in the
AlgorithmSuite assertion. The algorithms
corresponding to Basic256 are defined in [2], where
HmacSha1 algorithm is used for the signature method,
and Sha1 algorithm is used for the digest method.

In the XML signature and encryption, the key for
the signature and encryption is represented as a security
token, which is an XML element with security-related
information. An X509 token is a security token for a
Base64-encoded X.509 certificate. This policy has the
X509Token assertion in the AsymmetricBinding
assertion, which means an X509 security token is used
for the signature and encryption of the SOAP Body. A
ProtectTokens assertion requires a signature on the
security token that was used to sign the SOAP Body. A
SignedSupportingTokens assertion specifies a
requirement of additional token, in this example a
signed username token is required.

This example specifies very simple requirements,
but WS-SecurityPolicy is a quite complicated and
flexible specification. For users without detailed
knowledge of the related specifications, it is too
difficult to understand all of the security requirements.

3.2.2. Access Control Policy. The Access Control
Policy (ACP) restricts who can access a service. For
example, a travel reservation service should be invoked
only by travel agency employees. This requirement is
for a service operation itself, not for data. Therefore, an
ACP is sets of an operation name and list of roles that
are allowed to access the service. The ACP can be
defined as follows: ACP := (operation name, role list).
The ACP for the operation getReservation of the travel
reservation service can be defined as (getReservation,
[agencyEmp]), where agencyEmp is a role for a travel
agency employee.

As for a policy representation, there are standard
specifications for ACPs. XACML [5] is a typical
specification for access control policy, and we could
use it for ACP. However we may need some extensions
for XACML to express the ACP for a service itself. In
this study, defining the expression of the ACP is not the
main focus, so the representation of the ACP is not
discussed here.

3.2.3. Composite Process Policy. As for the security
policy of a composite service, we can define a DPP and
an ACP for a composite service in the same way as for
an atomic service. Additionally, we need to introduce a
process policy for a composite process itself: the
Composite Process Policy (CPP). In this paper, we
define the CPP to specify the following requirements:

1. Special ACP for services invoked in a process
2. Separation of Duties: Services which should be

executed by different roles
3. Order of services invoked in a process

The CPP should be defined by a developer who
assembles services or interpreted from the business

Figure 4. Example of Data Protection Policy
in WS-SecurityPolicy

<!-- Endpoint Policy -->
<wsp:Policy ….>

<sp:AsymmetricBinding>
<sp:InitiatorToken>

<sp:X509Token />
</sp:InitiatorToken>
<sp:RecipientToken>

<sp:X509Token />
</sp:RecipientToken>
<sp:AlgorithmSuite>

<sp:Basic256 />
</sp:AlgorithmSuite>
<sp:IncludeTimestamp />
<sp:ProtectTokens />

</sp:AsymmetricBinding>
<sp:SignedSupportingTokens>

<sp:UsernameToken />
</sp:SignedSupportingTokens>

</wsp:Policy>

<!-- Message Policy -->
<wsp:All …>

<sp:SignedParts>
<sp:Body/>

</sp:SignedParts>
<sp:EncryptedParts>

<sp:Body/>
</sp:EncryptedParts>

</wsp:All>

90

requirements. However, these requirements tend to be
written as a document in a natural language. There is
no standardized representation for CPP which can be
processed by software such as XML. As with the ACP,
the representation of CPP is out of the scope of this
paper.

This paper proposes a way to compose the security
policies for a composite process from the policies of
the external services invoked in the process. Our
approach is based on predicate logic, and the policy
composition rules are explained in the next section.

4. Security Policy Composition

4.1. Policy Composition Architecture

First, we explain the basic idea of policy
composition. An atomic service has two kinds of
security policies, DPP and ACP. A DPP can be
regarded as security properties for the data itself. For
example, suppose that the travel reservation service
requests a customer ID, and a security policy requires
that the request message should be signed and
encrypted by a high level algorithm. We regard this as
signifying that the customer ID itself is highly
confidential data, so another service which uses this
customer ID should maintain the high security by using
the same high level algorithm. Therefore, a DPP can be
defined from the security properties of the data used in
the composite service.

The composition of the ACP is done in a similar
way. An ACP defines requirements for a service

operation itself, and then the ACP is considered as the
properties of the service operation. We can say that an
ACP for a composite service should be consistent with
the properties of the operations of the atomic services.

We define this idea in predicate logic to provide a
policy composition mechanism by using inference.
Figure 5 illustrates our policy composition architecture.
Our system has three main technical points: (1)
Transformation into logic from the composite process
and policy representation, (2) DPP and ACP
composition rules, and (3) CPP validation rule. The
inputs are process definitions in BPEL, service
descriptions of a composite service in WSDL, and DPP
written in WS-SecurityPolicy, and they can be
transformed into predicates in our system. The policy
composition is executed by two inferences using the
DPP and ACP composition rule, and the CPP
validation rule. In the first inference, we can get a
composite DPP and ACP without inconsistencies
among the policies of external services. These
composite DPP and ACP if they have no violations of
the CPP. The inference results are transformed into a
description in WSDL of a composite service attached a
security policy written in WS-SecurityPolicy, and then
we can generate the concrete composite security
policies.

In addition to this bottom-up policy composition,
our system infers inconsistencies of composite policies
from the top-down. If a security policy for a composite
service is defined by a service developer, the composite
policy can be used as an input to our system to check
that there are no inconsistencies with the policies of the

Figure 5. Security Policy Composition Architecture

BPEL

Access Control
Policy

Composite
Process

Data
Protection

Policy

Access
Control
Policy

Composite
Process
Policy

Inputs

DPP / ACP
Composition

Rules

Composite
Process Policy

WSDL
With DPP

Composite
ACP

Composite
DPP

Composite
DPP

Valid
Comp ACP

Valid
Comp DPP

CPP
Validation

Rule

Security Policy Composition Engine

DPP and ACP Composition Engine

CPP Validation Engine

Composite
ACP

Outputs

XML

Natural
Language

Prolog
Facts

Prolog
Rules

91

atomic services. The two-way policy composition is an
advantage of logic-based inference, and hence we take
this approach for the security policy composition.

The following sections show the definitions of
predicates for security policies and composition rules.
Due to limited space, we show only parts of the
predicates.

4.2. Process and Security Policies in Predicate
Logic

The DPP written in WS-SecurityPolicy is attached
in WSDL, and the BPEL process representation
imports WSDL of both the composite service and the
external services. Our system transforms these WSDL,
BPEL, and DPP into predicates that are used as Prolog
facts in the policy composition inference. The
following are parts of the predicates for WSDL, BPEL,
and DPP. Here, uppercase letters show the types of
variables.

¾ WSDL

portType(i:Inter, o:Operation).
operation(o:Operation, req:RequestMsg,

res:ResponseMsg).
variable(req:RequestMsg, reqvar:List).
variable(res:ResponseMsg, resvar:List).

The predicates for WSDL are defined

straightforwardly from the XML elements in WSDL.
The predicate portType has an interface i and an
operation o, and the operation o exchanges a request
message req and a response message res. Each message
consists of a list of variables defined by a list reqvar
and a list resvar.

¾ BPEL

receive(name:String, o:Operation, pl:PartnerLink,
pt:PortType, req:RequestMsg).

invoke(name:string, o:Operation, pl:PartnerLink,
pt:PortType, req:RequestMsg,
res:ResponseMsg).

reply(name:String, o:Operation, pl:PartnerLink,
pt:PortType, res:ResponseMsg).

assign(from:RequestMsg, fromvar:List,
to:RequestMsg, tovar:List).

link(source:Action, target:Action).

We defined predicates for some actions in BPEL.
The predicates receive, invoke, and reply are
transformed from the corresponding actions. The
variables in these predicates correspond to the
attributes of an XML element for each action. Also, the

variable assignment in the composite process is
specified by the predicate assign, where the specified
variable assignment from the variable fromvar of the
message from is to the variable tovar of the message to.
The predicate link means that an action source and an
action target are linked directly in the process. There
are no BPEL actions corresponding to the link, so the
orders of actions which are specified in the composite
process are transformed in the predicate link.

¾ DPP

dpp(m:Msg, sigIds:List, endIds:List, tokenIds:List,
optionIds:List).

signature(m:Msg, sigId:String, var:List,
tokenId:String, calgo:C14NM,
salgo:SigM, talgo:TransM, dalgo:DigM).

encryption(m:Msg, endId:String, var:List,
tokenId:String, kalgo:KeyEncM,
dalgo:DataEncM).

token(m:Msg, tokenId:String, t:TokenType).
protectToken(m:Msg, optionId:String, sigId:String).
signedSupportingToken(m:Msg, optionIId:String,

tokenId:String).

DPP predicates are transformed from the WS-
SecurityPolicy description. The WS-SecurityPolicy
specification defines many security policy assertions to
specify security requirements. However, by considering
the WS-Security semantics, the security properties
specified by WS-SecurityPolicy are classified into four
types of security requirements: Signature, Encryption,
Token, and OptionalRequirements. The predicate for
DPP is dpp, which is applied to a message m and has Id
lists for the four security requirements. The signature
requirement is specified by a predicate signature,
where sigId is the Id of this signature on a variable in a
variable list var, and the tokenId is the Id of a security
token used for this signature, using the canonicalization
algorithm calgo, the signature algorithm salgo, the
transform algorithm talgo, and the digest algorithm
dalgo. Similarly, the predicate encryption is for the
encryption requirements, where the key encryption
algorithm is kalgo and the data encryption algorithm is
dalgo. The predicate for the security token is token,
which has variables for the token Id tokenId and the
token type t, such as X509v3. Here, the token types
must be predefined. In the WS-SecurityPolicy
specification, there are many kinds of optional
requirements. The two examples shown here are
protectToken and signedSupportingToken. The
predicate protectToken requires that a security token be
used for the signature whose Id is sigId, which should
also be signed by itself. The predicate

92

signedSupportingToken requires a signature on the
security token whose Id is tokenId. Additional
properties are not included due to the limited space, but
our predicates are defined from the XML
representation of WS-SecurityPolicy, so we can easily
transform security policies into these predicates.

We also defined the predicates for ACP and CPP.

¾ ACP

acp(name:String, roles:Set).
available(name:String, o:Operation).
role(roleName:String).
level(role1:String, role2:String).

The predicate acp is an access control policy named

name and the roles in roles are allowed to access the
service. The ACP named name is applied to the service
operation o, which is specified by the predicate
available, and therefore the roles in roles can access
the service operation o. The role names are defined by
the predicate role. If a role role2 has all of the rights to
access the services for a role role1, we say that the role
role2 is a higher level role than the role role1. This
relationship between two roles can be specified by the
predicate level.

For a CPP, there are three kinds of process policies
defined in Section 3.2, and they are specified in logic
as follows:

¾ CPP

allowedRolesByProcess(o:Operation, roles:Set).
sod(o1:Operation, o2:Operation).
ordered(comp:Operation, o1:Operation, o2:Opreation).

The first predicate allowedRolesByProcess specifies

that the roles in roles can access the operation o in the
composite process. The second predicate sod specifies
that the operations o1 and o2 should be executed by
different roles in the process. And the predicate
ordered is an order of service operation invocation for
the composite operation comp. It means the operation
o1 should be invoked before the operation o2.

We define these three security policies in predicate
logic, and we can execute them as Prolog facts. The
composite security policies are inferred from these
facts by using the policy composition rules defined in
the next section.

4.3. Policy Composition Rules

As shown in Figure 5, our system executes two
inferences to compose a security policy. In the first
inference, the composite DPPs and ACPs are generated

and in the second inference, they are validated by using
the CPP validation rule. This section describes the
composition rules as logic for the three types of
security policies.

4.3.1. DPP composition. As explained in Section 4.2,
the requirements of DPP are considered as data
properties. Therefore, the composite DPP will be
consistent with an external service DPP if the same
security properties of variables used in both a
composite service and an external service are
equivalent.

¾ DPP composition rule

isIntegrityConsistent(comp:Operation, cVar:String,
ext:Operation, eVar:String,
calgo:C14NM, salgo:SigM,
talgo:TransM, dalgo:DigM,
t:TokenType) :-

 assignedToVar(comp:Operation, cVar:String,
ext:Operation, eVar:String),

 requestIntegrity(ext:Operation, eVar:String,
calgo:C14NM, salgo:SigM,
talgo:TransM, dalgo:DigM,
t:TokenType),

not(requestIntegrity(comp:Operation, cVar:String,
calgo:C14NM, salgo:SigM,
talgo:TransM, dalgo:DigM,
t:TokenType)).

The predicate isIntegrityConsistent is a constraint

for consistency of data integrity. It returns true when
the variable cVar of the composite operation comp and
the variable eVar of the external operation ext have the
same signature requirements, where the
canonicalization algorithm is calgo, the signature
algorithm is salgo, the transform method is talgo, and
the digest method is dalgo, and the security token t
which is used for the signature. The predicate
assignedToVar infers a variable assignment from cVar
to eVar. Based on our idea of DPP composition, the
security properties of the assigned variables should be
consistent. The predicate requestIntegrity returns true
if a variable requires integrity, and the two predicates
requestIntegrity for both cVar and eVar should be true.
However, the predicate isIntegrityConsistent has a
contradiction with the requestIntegrity for cVar, so it
should return false if the composite DPP is consistent
with DPPs of external services.

For the other DPP requirements, encryption and
tokens, we define similar predicates, but they are
omitted here due to the space limitations.

93

4.3.2. ACP composition. The ACP can be regarded as
an operation property, so the composite ACP will be
valid if properties of composite operation and external
operations are consistent.

¾ ACP composition rule

isACPConsistent(comp:Operation, ext:Operation,
roles:Set) :-

 invokedOperation(comp:Operation, ext:Operation),
 allowedRoles(ext:Operation, roles:Set),
 not(allRolesIncluded(comp:Operation, roles:Set)).

The predicate isACPConsistent is a constraint on the

ACP’s consistency between the composite service
operation comp and the external service operation ext.
The predicate invokedOperation means that a
composite operation comp invokes an external service
operation ext in the process. The predicate
allowedRoles signifies that the external service
operation ext is allowed for the roles specified in roles.
The composite and external ACPs are consistent if the
roles allowed by ext are included in the roles allowed
by comp. The predicate allRolesIncluded returns true
when all of the roles in roles are included in the
allowed roles list of comp. The predicate
isACPConsistent returns false if the composite and
external ACPs are consistent. When true is returned,
we can redefine the consistent ACP by referring a
counterexample.

4.3.3. CPP validation. Here we define the constraints
on CPP consistency for each of the three requirements
defined in Section 3.2.3.

¾ Validation rule for composite ACP

isProcessACPSatisfied (o:Operation, roles:Set) :-
allowedRolesByProcess(o:Operation, roles:Set),
not(allowedRoles(o:Operation, roles:Set)).

The predicate isProcessACPSatisfied returns false if

the operation o is allowed for the roles in roles by both
the composite ACP and the CPP.

¾ Validation rule for Separation of Duties

isSODSatisfied(o1:Operation, o2:Operation) :-
sod(o1; Operation, o2; Operation),
allowedRoles(o1: Operation, roles1:Set),
allowedRoles(o2: Operation, roles2:Set),
not(allMembersNotIncluded(role1:Set, role2:Set)).

The predicate isSODSatisfied means that the

allowed roles for operation o1 are in roles1 and for
operation o2 are in roles2, and no roles are required for

both roles1 and roles2 if a separation of duty policy is
specified by the predicate sod.

¾ Validation rule for order of services

isOrderSatisfied(comp:Operation,
p1:Process, p2:Process) :-

ordered(comp:Operation, p1:Process, p2:Process),
not(postInvokeProcess(comp:Operation,

p1:Process, p2:Process)).

The last predicate isOrderSatisfied is a rule to

control the invocation order of the processes p1 and p2
in the composite operation comp. This predicate returns
false when p1 is invoked before p2 if the predicate
ordered is specified in the CPP.

We defined these constraints on policy consistency
as rules to validate the composite DPP, ACP, and
process. These predicates returns false when the rule is
satisfied and invalid policies are shown as a
counterexample when they return true. We can correct
the invalid composite policy to satisfy the CPP
validation rules by referring the counterexample.

Thanks to the way Prolog inference works, our
system can work for both the top-down and bottom-up
policy composition approaches. The consistent
composite policies are inferred using the bottom-up
approach, and the composite policies can be validated
using the top-down policy definition approach. Also,
we can compose policies using the same predicates
even if external services are also composite services,
not atomic services. In the next section, policy
composition is demonstrated for the travel reservation
service shown in Section 2.1.

5. Policy Composition Example

We are proposing a logic-based approach for
security policy composition, and define the facts and
rules for composite policy inference. The core part of
our system as shown in Figure 5 is the security policy
composition engine which is implemented in Prolog.
Here we demonstrate our policy composition results
from the core engine for the travel reservation scenario
of Section 2.1.

In our system, composite process definitions and
security policies for external services are assumed to be
predefined and are transformed into the corresponding
predicates. Here we give examples of the logic
representation for the WSDL and BPEL of the
composite process, the DPPs and the ACPs of the
external services of the travel reservation service as
follows.

94

Travel Reservation composite service
¾ WSDL

portType(agencyProcessInterface, getReservation).
operation(getReservation,

agencyRequest, agencyResponse).
variable(agencyRequest,

['agp:airlineInfo', 'agp:hotelInfo',
'agp:customerID', 'agp:mileageNo',
'agp:cardInfo']).

variable(agencyResponse,
['agp:airlineResult', 'agp:hotelResult']).

¾ BPEL
receive(receive, getReservation,

agencyProcessInterfacePartner,
agencyProcessInterface, agencyRequest).

invoke(airlineReservation, reserveAirline,
airlineProcessInterfacePartner,
airlineProcessInterface,
airlineRequest, airlineResponse).

reply(reply, getReservation,
agencyProcessInterfacePartner,
agencyProcessInterface, agencyResponse).

assign(agencyRequest, 'agp:mileageNo',
airlineRequest, 'api:mileageNo').

link(receive, airlineReservation).

Some predicates for the travel reservation composite
service are shown here. These predicates are
transformed from WSDL and BPEL. The WSDL
description defines that the operation of the composite
service, its portType and variables. The operation is
getReservation which receives a message
agencyRequest. The predicates for BPEL specify
actions in the operation getReservation. The predicates
invoke mean that the operation reserveAirline is
invoked. The predicates link specifies that the action
receive links to the action airlineReservation. This
composite process has eight assign actions, and one of
them is shown here. This predicate assign means that
the variable ‘api:mileageNo’ in the message
agencyRequest is assigned to the variable
‘api:mlieageNo’ in the message airlineRequest.

Here we show some predicate examples for the
composite process, and similar predicates for external
services, airlineReservation and hotelReservation
services, are necessary. They are omitted due to the
space limitations here.

Airline Reservation service
¾ DPP

signature(airlineDpp, 'api:sigID1',
['api:mileageNo', 'api:airlineInfo', 'api:cardInfo'],
'api:x509ID', exc14n, hmacsha1, exc14n, sha1).

token(airlineDpp, 'api:x509ID', x509V3).
token(airlineDpp, 'api:unID', username).
protectToken(airlineDpp, 'api:optionID1', 'api:sigID1').
signedSupportingToken(airlineDpp,

'api:optionID2', ‘api:unID').
¾ ACP

available(airlineACP, reserveAirline).
acp(airlineACP, [agentEmp, airlineEmp]).

Here a simplified DPP and ACP are defined for the

external services to explain the policy composition
example. The DPP of the airline reservation service
specifies that all request variables should be signed
with a signed X509v3 security token, and a signed
username token is required. The service can be used by
a user who has a role as an agentEmp and an
airlineEmp. The variables and IDs are as specified in
QName to distinguish among the variables of different
services.

Hotel Reservation service
¾ DPP

signature(hotelDpp, 'hpi:sigID1',
['hpi:customerID', 'hpi:hotelInfo', 'hpi:cardInfo'],
'hpi:samlID', exc14n, hmacsha1, exc14n, sha1).

token(hotelDpp, 'hpi:samlID', saml).
protectToken(hotelDpp, 'hpi:optionID1', 'hpi:sigID1').

¾ ACP
available(hotelACP, reserveRoom).
acp(hotelACP, [agentEmp, hotelEmp]).

For the hotel reservation service, a similar DPP is

defined. All of the request variables should be signed
with a signed Saml security token. The service can be
used by a user whose role is agentEmp and hotelEmp.

To generate the integrity requirements for the
composite DPP, the predicate isIntegrityConsistent is
used. Six solutions are inferred for the composite
service the travel reservation service. One of the
solutions is:

Comp = getReservation, CVar = 'agp:hotelInfo',
Ext = reserveRoom, EVar = 'hpi:hotelInfo',
C14NM = exc14n, SigM = hmacsha1,
TransM = exc14n, DigM = sha1,
TokenType = saml

This solution can be interpreted as saying that the

variable ‘agp:hotelInfo’ of the composite operation
getReservation is equivalent to the variable
‘hpi:hotelInfo’ of the external operation reserveRoom
and these variables should be signed with a saml token
and the inferred algorithms, i.e. the canonicalization

95

method and the transformation method are exclusive
c14n, the signature method is HmacSha1, and the
digest method is Sha1. The travel reservation service
has six request variables, and the solutions correspond
to each variable. The composite DPP will be generated
by merging these solutions.

We can infer the composite ACP by executing the
predicate isACPConsistent. Here there are no allowed
roles defined for the travel reservation service, and we
can get lists of the required roles for the service. Two
solutions are inferred, and one of them is:

Comp = getReservation,
Ext = reserveAirline,
Roles = [agentEmp, airlineEmp]

This solution means that the composite operation

getReservation needs to be allowed for agentEmp and
airlineEmp, which are roles in the ACP of the external
operation reserveAirline. The composite service
developer can correct the ACP of getReservation by
referring to this solution.

Here we demonstrated a security policy composition
for a simple scenario which the external services are
atomic, and it seems that we got just the results that
were expected. However, the BPEL and WS-
SecurityPolicy representations are quite complex and it
is quite hard for developers to understand them and
compose the security policies by hand. Also, invoked
external services could be also composite services. Our
proposed system can handle recursive service
invocations. Therefore, a developer only needs to think
of the top-level composite service for the policy
composition even if the invoked external services are
also implemented by another composite service, which
is one of the benefits of our approach. Our main
contribution is assuring consistency of the security
policies among the invoked external and composite
services without increasing the developer’s workload.

This is a first step in our study of security policy
composition, so there are some limitations and
remaining issues. Now we are focusing on some of the
specific actions in BPEL processes, such as receive,
invoke, replay, and assign. Our work so far assumes
that the external services are invoked symmetrically,
but asymmetric invocations are important in practice,
especially for large applications. Our current
implementation is a core policy composition engine, so
it is necessary to extend the implementation to support
the transformations between the XML representations
of BPEL and WS-SecurityPolicy. We will work on
these aspects in the future.

6. Related Work

We proposed a logic-based approach for security
policy composition. There is some earlier work for
Web Services Security and policy using logic-based
approaches.

Tziviskou and Nitto [7] proposed a formal
specification for the requirements in WS-Security, and
validate if the exchanged messages satisfy the
requirements. Their approach is similar to ours, both in
representing the security policy written using WS-
SecurityPolicy and in using predicate logic. However,
the goal to be achieved is clearly different. They focus
on comparisons between two policies or messages. In
contrast, we propose security policy composition rules
using logic, and validate the consistency of the invoked
external policies and the composite policies. Lee et al.
[8] also worked to compose security policies, and they
apply the concept of logically defeasible events to test
the security policies written in WS-SecurityPolicy.
Their motivation is a policy composition for different
departments, and the composition preferences need to
be defined by the policy writers. In our approach, the
policy composition rules are predefined and will be
executed according to the BPEL process. The policy
translation from XML representation into logic can be
processed automatically, and therefore our approach
can compose policies without the efforts of policy
writers.

There have been studies of policy representations
using predicate logic, not only for WS-SecurityPolicy.
Wang and Yuan [9] applied predicate logic to
workflow security management. Their security policy
focus is access control for a specific workflow, but the
transformation from workflow into logic is not
discussed in their work. Halpern and Weissman [10]
proposed reasoning about policies by using first-order
predicate logic. Their example of security policies are
for access control policy to a document, and are
simpler than our policies. Glasgow et al. [11] proposed
a formal framework for security policy called Security
Logic, and they apply modal logic to generic security
policy considerations. Our work is more specific to
SOA application security.

Security policy composition has been studied in a
variety of fields. Li et al. [12] studied policy
consistency in Web service compositions written in
BPEL, with motivations similar to ours. They studied
privacy policies and approaches to validate policies in
graph transformations. He and Yang [13] analyzed
security policy integration between different
application domains. They provide requirements for
security integration and patterns. Their targeted policy

96

is access control policy, but they do not mention the
concrete policy representation. Srivatsa el al. [14]
presented an access control model and techniques for
specifying and enforcing access control rules for Web
service compositions. They introduced composite roles
and principles and specify access control policies using
pure-past linear temporal logic. Charfi and Mezini [15]
proposed an aspect-oriented approach to specify
security policies for Web service compositions. They
implement a set of aspects in AO4BPEL which is an
aspect-oriented extension to BPEL. Bertino et al. [16]
proposed an extension of WS-BPEL syntax with an
authorization model. They specify authorization
information and constraints using XACML [5] for the
BPEL process, and can specify the Separation of Duty
as with our approach. There are many related projects
discussing security policies for processes, especially
access control policies. Our study supports three kinds
of security policies: DPP, ACP, and CPP, which is one
of our advantages.

7. Conclusion

This paper proposes a security policy composition
mechanism for composite services. To define security
policies for a composite service which invokes some
external services in the process, we need to maintain
consistency with the security policies of the external
services. However, it is quite hard for developers to
define composite policies by hand because the
composition rules are not clear for maintaining
consistency and the composite processes and policies
are themselves complicated. We propose a logic-based
approach to compose security policies automatically
from a composite process definition and existing
security policies of external services. The composite
processes and policies are represented using predicate
logic, and the composite policies are inferred according
to the composition rules we defined. The advantage of
this approach is that two composition approaches can
be supported: bottom-up and top-down policy
composition. Also, our approach can handle a
composite service which has a recursive structure. We
considered three kinds of security policies for
composite services: DPP, ACP, and CPP. We
demonstrated the policy composition approach using a
travel reservation service, and showed that consistent
policies are inferred by our approach. This technology
can contribute to assure SOA application security
without increasing the developer’s workload. In this
study, some restrictions remain, such as
implementations of transformations from concrete

policy representations into predicates, and in
supporting additional actions in BPEL, but we now
begin work to address those restrictions.

References
[1] Web Services Business Process Execution Language

Version 2.0, http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

[2] WS-SecurityPolicy 1.2, http://www.oasis-open.org/com
mittees/download.php/23821/ws-securitypolicy-1.2-spe
c-cs.pdf.

[3] Web Services Security: SOAP Message Security 1.1, htt
p://www.oasis-open.org/committees/download.php/167
90/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[4] Eclipse BPEL project, http://www.eclipse.org/bpel/.
[5] WebSphere Integration Developer, http://www.ibm.com

/software/integration/wid/.
[6] eXtensible Access Control Markup Language (XACM

L) Version 2.0, http://docs.oasis-open.org/xacml/2.0/ac
cess_control-xacml-2.0-core-spec-os.pdf.

[7] Tziviskou, C. and Nitto, E.D., Logic-based Managemen
t of Security in Web Services. Proc. of IEEE Internation
al Conference on Service Computing, 2007, pp. 228--23
5.

[8] Lee, A.J., Boyer, J.P., Olson, L.E. and Gunter, C.A., De
feasible security policy composition for web services. P
roc. of the 4th ACM workshop on Formal methods in se
curity, 2006, pp.45--54.

[9] Wang, H.J. and Yuan, M., Predicate Logic and its Appli
cation in Workflow Security Policy Management. http:/
/math.arizona.edu/~ksimic/ming.doc, 2005.

[10] Halpern, J.Y. and Weissman, V., Using first-order logic
to reason about policies. Proc. of 16th IEEE Computer
Security Foundations Workshop, 2003, pp. 187--201.

[11] Glasgow, J., Macewen and G., Panangaden, P., A logic
for reasoning about security. ACM Transactions on Co
mputer Systems, vol. 10, Issue 3, 1992, pp. 226--264.

[12] Li, Y.H., Paik, H., Benatallah, B. and Benbernou, S., Fo
rmal Consistency Verification between BPEL Process a
nd Privacy Policy. Privacy Security and Trust conferenc
e, 2006.

[13] He, D.D. and Yang, J., Security Policy Specification an
d Integration in Business Collaboration. Proc. of IEEE I
nternational Conference on Service Computing, 2007, p
p. 20--27.

[14] Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou I. and
 Yin, J., An Access Control System for Web Service Co
mpositions. Proc. of IEEE International Conference on
Web Services, 2007, pp. 1--8.

[15] Charfi, A. and Mezini, M., Using Aspects for Security
Engineering of Web Service Compositions. Proc. of IE
EE International Conference on Web Services, 2005, pp.
 59--66.

[16] Bertino, E., Crampton, J. and Paci, F., Access Control a
nd Authorization Constraints for WS-BPEL. Proc. of IE
EE International Conference on Web Services, 2006, pp.
 275--284.

97

