
Publish by Example

Sonia Guéhis
University of Paris Dauphine

sonia.guehis@lamsade.dauphine.fr

David Gross-Amblard
University of Bourgogne

david.gross-amblard@u-bourgogne.fr

Philippe Rigaux
University of Paris Dauphine and INRIA-Orsay

philippe.rigaux@lamasde.dauphine.fr

Abstract

We propose an approach for producing database pub-
lishing programs by example. The main idea is to interac-
tively build an example document, representative of the pro-
gram output. The system infers from this document, without
ambiguity, the publishing program. The end-user does not
need to know a programming language, a query language
or the database schema.

1 Introduction

We consider the problem of producing “dynamic” doc-
uments that contain data retrieved from a relational data-
base. We impose no restriction on our concept of document:
it can be non-structured character data (e.g., an email), an
XML document (for data exchange purposes), an HTML
document (web site publishing), a LATEX file or an Excel
spreadsheet, etc. Their common characteristic is to con-
sist both of static parts and dynamic parts, the latter being
values extracted from the database when the document is
produced. We call database publishing the process of cre-
ating dynamic documents from a relational instance. The
most typical example is the production of (X)HTML pages
in dynamic web sites. We use it for illustration purposes in
this paper.

Relational database publishing is technically simple, but
requires in practice the association of programming tools
and database concepts which often make the production te-
dious and error-prone. It constitutes in particular an intri-
cate practical aspect of web site engineering [10]. Spe-
cialized languages, such as Servlets/JSP, PHP or ColdFu-
sion [3], bring partially satisfying solutions. However, in
all cases, writing a database publishing program requires
heterogeneous technical knowledge, including: (i) the ba-
sics of a programming language (say, Java/JSP); (ii) a query

language (say, SQL); (iii) the database schema.
In the present paper we propose a simple mechanism to

produce database publishing programs. The main idea is to
interactively construct a sample dynamic document which
can then be used to infer without ambiguity the publish-
ing program. What makes such an approach effective is the
inherent simplicity of relational publishing which does not
require the full power of general-purpose programming and
query languages.

The benefits are twofold. First the proposed mechanism
does not require any technical expertise. As such if of-
fers to non-expert users an opportunity to create rich docu-
ments with minimal efforts. Second it constitutes a generic
approach which holds independently from a specific envi-
ronment, does not require any preliminary decision regard-
ing programming practices and conventions, and avoids the
tedious and repetitive programming tasks. One obtains a
high-level specification of publishing programs, with po-
tential support for software engineering tasks (e.g., verifi-
cation) as well as database optimization.

Overview of the approach.
Figure 1 presents the main components of our approach,

and their respective roles in a publishing system. First,
we formalize relational database publishing as a “document
query language”, called DOCQL, already proposed in pre-
liminary form in [6]. A DOCQL query can be seen as
a syntax-neutral (declarative) specification of a publishing
program written in Java/JSP or in any equivalent program-
ming framework. Producing a DOCQL query constitutes
the target of the publish-by-example process.

The publishing model relies on the concepts of canonical
documents and canonical instances. A canonical document
characterizes uniquely a DOCQL query q, and therefore
the publishing program which can be derived from q. The
user interacts with a WYSIWYG graphical editor which lets
him construct a canonical document D from a canonical in-
stance IC .

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.19

45

Canonical
document D

Canonical

Publishing program

Java/JSP
PHP
ColdFusion

DocQL

query result

query q

S
instance I instance

Actual

WYSIWYG
editor

PBE
analyzer

DocQL engine

DocQL
translator

...
Generator

Database
schema

C

Figure 1. Overview of the publish by example
process

A canonical instance IC of a schema S is an instance
such that, for any DOCQL query q, there exists a canonical
document over IC that characterizes q. Proposing a canoni-
cal instance to a user is tantamount to the ability of produc-
ing, by example, all the possible DOCQL queries that can
be expressed over S. The canonical instance is a predeter-
mined instance of the schema S, generated by the system
administrator using an instance generator.

Given a canonical instance IC and a canonical document
D built over IC , the Publish By Example analyser infers
a unique DOCQL query q. The user can then either run
q over the actual instance, through the DOCQL engine, or
translate q to a traditional publishing program, written in
any convenient language.

Running example.
Throughout the paper we illustrate our approach over

a sample movie database representing movies with their
(unique) director and their (many) actors. Figure 2 shows
a simple database instance. Primary keys are in bold, and
foreign keys in italic.

In the rest of this paper, Section 2 briefly introduces
the DOCQL language. We then describe the publica-
tion model in Section 3.Section 4 positions our pro-
posal with respect to the state of the art, and Sec-
tion 5 concludes the paper. A long version of the pa-
per, along with an on-line demonstrator, is available at
http://www.lamsade.dauphine.fr/rigaux/docql.

2 The publishing language DOCQL

We give the main features of the publishing query lan-
guage DOCQL. Since this does not constitute a contribution
of the present paper, we limit the presentation to a few il-
lustrative examples. Formal definitions can be found in [6].

Data model.
DOCQL aims at a concise specification of publishing

title year id_director genre
Unforgiven 1992 20 Western
Van Gogh 1990 29 Drama
Kagemusha 1980 68 Drama
Absolute Power 1997 20 Crime

Movie
id last_name first_name
20 Eastwood Clint
21 Hackman Gene
29 Pialat Maurice
30 Dutronc Jacques
68 Kurosawa Akira

Artist

title id_actor character
Unforgiven 20 William Munny
Unforgiven 21 Little Bill Dagget
Van Gogh 30 Van Gogh
Absolute Power 21 President Allen Richmond

Cast

Figure 2. An instance of the Movies database

programs. The language captures with a uniform and sim-
ple syntax the queries and programming instructions used to
build dynamic documents. It relies on a navigation mecha-
nism in an instance I modeled as a labeled directed graph
GI . Tuples are seen as internal nodes, values as leaf nodes,
and edges represent either tuple-to-tuple relationships or
tuple-to-attribute dependencies.

Figure 3 shows the data graph of the instance of Fig-
ure 2. We distinguish functional dependencies between
nodes (e.g., between a movie node and its director node) and
multivalued dependencies (e.g., between a movie node and
its actor nodes). The former are shown with white-headed
arrows, the latter with black ones.

If N1 and N2 are two nodes in the data graph, we note
N1

p→ N2 if N2 functionally depends on N1, and we say
that p is a unique path. For instance if N1 is a movie and N2

the last name of its director, then N1
director.last_name→ N2,

and director.last_name is a unique path. Else we

note N1

p
� N2 and say that p is an instance of a multiple

path.
The context of a node N is the set of leaf nodes that

functionally depend on N . The neighborhood of N is the
set of nodes N ′ such that there exists an elementary multiple

path (i.e., with only one edge) N
p
� N ′. Consider again

Figure 3 and the node (of type Movie) in the box. Its context
consists of the values Unforgiven (title of the movie), 1992
(year), Western (genre), 20, Clint, and Eastwood (resp. the
id, first name and last name of the director who is uniquely
determined by the movie). The neighborhood consists of
the two nodes Cast.

Query language.
DOCQL combines navigation in the data graph with in-

46

(Cast)

Unforgiven
1992

Western

20

Clint

Eastwood

first_name

last_name

William Munny

character

character

Little Bill Dagget

Hackman

21

Gene

first_name

last_name

title
year

genre

id

(Movie)

Direct

Director

Cast

Movie

Actor

Cast

Movie

Cast

(Cast)
(Artist)

(Artist)

id

Actor

Cast

Figure 3. A subset of the data graph of our
sample instance

stantiation of the textual fragments that contribute to the
final document. A DOCQL query is essentially a tree of
path expressions which denote the part of the graph that
must be visited in order to retrieve the data to include in
the final document. Path expressions use an XPath-like syn-
tax. An expression p is interpreted with respect to an initial
node Ni (unless it begins with db which plays the role of
/ in XPath), and delivers a set of nodes, called the terminal
nodes of p (with respect to Ni). Each path is associated to a
fragment which is instantiated for each terminal node. Path
and fragments are syntactically organized in rules of the
form @path[condition]{fragment}, where path
is a path expression, condition is a node condition and
fragment is the fragment instantiated for each instance of
path.

The following example shows a DOCQL query over our
Movies database. It produces a (rough) document showing
the movie Unforgiven along with its director and actors.

Example 1 @db.Movie[title=’Unforgiven’]{
@title{}, @year{}, directed by
@director.first_name{} @director.last_name{}

Featuring:
@Cast{
- @artist.first_name{}

@artist.last_name{}as @character{}
}

}

The semantics of the language corresponds to nested loops
that explore the data graph, one loop per rule. This naviga-
tion produces the trace of a query q, which is a finite unfold-
ing of the graph GI representing the nodes visited during the
evaluation of q. The result of a query is obtained by “deco-
rating” the nodes of its trace with the (static) character data
of their associated rules. Applied to the data graph of Fig-

ure 3, one obtains the following document as result of the
previous example:

Unforgiven, 1992, directed by Clint E-
astwood, Featuring:

- Clint Eastwood as William Munny
- Gene Hackman as Little Bill Dagget

3 The Publish by Example Model

We now develop our model by defining our two key con-
cepts: canonical documents and canonical instances.

Structure of canonical documents.
A canonical document has a hierarchical structure. Each

node of the document’s structure is called a block. A
block is a character string with (optional) references to other
blocks. The textual part of a block consists of fixed text and
values from the active domain (i.e., leaves) of the graph GI .

Let Σ be an alphabet. F ⊂ Σ∗ denotes the set of static
fragments, and dom ⊂ Σ∗ denotes the active domain of GI .
For the sake of simplicity, we suppose that F ∩dom = ∅, in
order to distinguish elements from theses two sets. In prac-
tice, the distinction may rely on a syntactical convention
We also assume a set B, distinct from the previous ones, of
block identifiers.

Definition 1 (Block) A block B is a pair (i, b), where i ∈
B is the block identifier and b ∈ (F|dom|B)∗ is the block
body. We denote by components(B) the set of blocks recur-
sively referenced by the body of B.

We are interested in blocks that can be unambiguously in-
terpreted with respect to GI . We first define the notion of
representative node of a block.

Definition 2 (Representative node of a block) A node
N ∈ GI is representative of a block (i, b) if and only if each
value v ∈ dom in b belongs to the context of N .

Recall that the context of a node N is the set of values
v that functionally depend on N . Consider for example the
block B with body “Unforgiven, published in 1992 and di-
rected by Clint Eastwood”, where values from dom appear
in bold. The node N corresponding to the movie Unfor-
given is representative of B, because each value v belongs
to the context of N (see Figure 3).

Let B be a block and N be a representative node of B.
We say that B is valid with respect to N if there exists a
representative node for each component of B, such that the
structure of the subgraph induced by these nodes is homo-
morphic to the structure of B. Formally:

Definition 3 (Block validity) A block B is valid with re-
spect to a node N if and only if N is a representative node,

47

and for each child block Bi of B there exists a node Ni in
the neighborhood of N such that Bi is valid with respect to
Ni.

A block B is said to be valid on GI if there exists a node
N in GI , such that B is valid with respect to N .

Consider block B1 with body “Unforgiven, 1992, fea-
turing: #ref(2)”, referencing block B2 with body “Little
Bill Dagget played by Gene Hackman”. B1 is valid with
respect to the node N1 (framed with solid lines in Fig-
ure 3) because we can find a node N2 (framed with dot-
ted lines), representative of B2 in the neighborhood of N1,

with N1
Cast� N2. Note that Little Bill Dagget, Gene and

Hackman, all belong to the context of N2.

Interpretation of valid blocks.
Given a block B valid on GI , our goal is to define a

mapping that uniquely determines a query q from B and
GI . A complementary question is to know, given a query q,
whether there exists a block B valid on GI that determines q.
We introduce three constraints on GI : completeness, mini-
mality and non-ambiguity. An instance is said complete if,
for each node N of type r ∈ R, and each edge type e of the
form r

a→ r′, there exists at least one edge N
a→ N ′. The

instance is minimal is there is at most one such edge. The
non-ambiguity condition is defined as follows:

Definition 4 (Non-ambiguous instance) An instance GI is
non-ambiguous if and only if, for all node N , the following
conditions hold:

• if N ′ is a node in the context (resp. in the neighbor-
hood) of N , there exists only one path p such that

N
p→ N ′ (resp. N

p
� N ′);

• if N1 and N2 are two nodes of the neighborhood, then
context(N1) ∩ context(N2) = ∅.

Checking this property for a given instance is easily done
by visiting each node and verifying its context and neigh-
borhood.

The first condition requires that if N ′ is a node in the
context or in the neighborhood of N , then the path leading
from N to N ′ can be uniquely determined. The instance on
Figure 3 would be ambiguous if, for example, the movie ti-
tle and the director’s name were both ’Eastwood’ (condition
on the context).

The second condition ensures that a node in the neigh-
borhood of N can be uniquely determined by any value
of its context. Still looking at Figure 3, assume that we
add a (multiple) path producer between movies and artists.
The instance becomes ambiguous if the producer’s name is
William Munny, since we can no longer determine whether
this value is the character of the neighborhood’s node Cast
or the name of the neighborhood’s node Producer.

The instance of Figure 3 is non-ambiguous, but not min-
imal nor complete. If we remove the node squared with
dashed lines (and the corresponding Artist subgraph), the
instance becomes also minimal (and complete).

If the instance is minimal and non-ambiguous, a unique
tree of representative nodes can be associated to a valid
block B, with one node for each descendant of B and B
itself. Since GI is minimal, this tree can be viewed as the
trace of a query (i.e., the tree of nodes visited during query
evaluation). Given a valid block B and a data graph GI , we
call generating queries the queries q such that B = q(GI).
In general, two non-equivalent queries q and q′ may yield
the same result on a specific instance GI . However, when
GI is a non-ambiguous instance, there exists a unique min-
imal element (up to equivalence) in the generating set of a
block B. Minimality is defined with respect to query (and
trace) containment.

Definition 5 (Minimal generating query) Let B be a
valid block on an instance GI . The minimal generating
query q of B is the smallest element (up to query equiva-
lence) of the set of generating queries of B according to
query containment.

A syntactic expression of the minimal generating query
can be built as follows. First, the tree T of the representative
nodes of B in GI is computed. One method to achieve this
is to consider values from each block as keywords and to
perform a search of representative nodes according to these
keywords. A simpler approach is to gather information on
the representative nodes visited by the user during the in-
teractive construction of the block. The latter solution is
applied in our prototype. Second, once the tree of represen-
tative nodes T is obtained, the rules of the DOCQL query
are recursively built according to the following procedure:

CREATERULE (B, Np, T)
Input: B, a block valid on GI ,

Np the representative node of the parent of B,
T , the tree of representative nodes.

begin
Take into tree T the node N , representative of B.
rule.path := the (unique) path from Np to N
rule.body := “ ”;
for each syntactic element e of B do

if e ∈ F then // e is a static text
append e to rule.body

if e ∈ dom // e is a value v from the graph
append a rule @p to rule.body, where p is
the (unique) path from N to v

if e ∈ B // e is a block B′, child of B
append the result of the recursive call to
CREATERULE (B′, N , T) to rule.body

end for
return rule

end

48

This procedure is initially called with the root block and
the virtual node corresponding to the graph entry point. It
is noteworthy that the soundness of this procedure is guar-
anteed only on a non-ambiguous instance.

This algorithm builds a DOCQL query without predi-
cates. The structure of a valid block yields only the speci-
fication paths in the database, without the ability to express
conditions on the encountered values. In order to complete
this specification, the user (assisted by the system) may pro-
vide a function f binding to each block B a condition (or
a conjunction of conditions). A condition on a block B is
defined by aθb, where θ is a relational comparison opera-
tor, and a and b are unique paths or simple values. We can
finally define canonical documents:

Definition 6 (Canonical document) A canonical docu-
ment of a query q is a pair (B, f), where B is a valid block
such that q is (equivalent to) the minimal generating query
of B, and f is a function that binds a conjunction of condi-
tions to each component of B.

A Publish-By-Example interface must assist the interac-
tive construction of a canonical document representing the
awaited query q, in the most intuitive and simple way. Note
that, in order to produce a canonical document character-
izing q, all the representative tuples required for block in-
terpretation must be available in the manipulated instance.
The following section addresses this issue.

Canonical instances.
The construction of a canonical document D assumes

that the instance proposed to the user allows both the con-
struction and the interpretation of D. This gives rise to the
question of constructing a specific instance, called canoni-
cal instance, that allows to build a canonical document for
all the possible queries over the graph schema.

Definition 7 (Canonical instance) An instance GI of a
schema S is a canonical instance if, for any query q over
S, there exists a canonical document of q on GI .

An instance is canonical if it is complete, minimal and
non-ambiguous. Completeness is required for allowing all
the possible navigations in the graph with respect to the
schema, whereas the minimality and non-ambiguity serve to
a proper interpretation of a canonical document as a query.
Recall that an instance is complete if, during the navigation
in the graph, we can find at any moment a choice for each
possible path type.

As an example, consider the relational instance of Fig-
ure 3, and assume that Movie contains only the tuple Kage-
musha. Suppose that a user wants to produce a publishing
query showing a movie with the list of its actors. It is not
possible to build a canonical document for this query on this

instance, since the casting is unkown for Kagemusha. This
instance is not canonical.

If, instead of Kagemusha, Movie contains the tuple Van
Gogh, we can produce the following canonical document
that shows a film, its director and its actors:

Van Gogh, 1990, directed by Maurice P-
ialat with :

- Jacques Dutronc, born in 1935

By contrast, the instance containing only film Van Gogh
is not sufficient to build an example for a publishing query
showing a film, its actors, and for each actor, the list of
films possibly directed by this actor. Indeed, in this instance
Jacques Dutronc is not a director. Nevertheless the relation-
ship between an artist and a movie as a director exists, and
a user may want to exploit this relationship. Therefore this
instance is still not canonical.

Finally, as a last example, consider the instance of Fig-
ure 3 in which the only represented movie is Unforgiven.
This instance allows the construction of the canonical doc-
ument giving a film, its actors, and the films directed by
these actors:

Unforgiven, 1992, directed by Clint E-
astwood with :

- Clint Eastwood, born 1930, as Wil-
liam Munny also director of ‘‘Unfor-
given’’

This document is possible thanks to a cycle into the data
graph, instance of the cycle Movie → Director → Actor →
Movie in the graph schema. The cycle size in the instance is
proportional to the cycle size in the schema. With the two
nodes Eastwood and Unforgiven, the instance cycle has a
minimal size (two edges). Although satisfying with respect
to the completeness of the canonical instance as a support
for canonical documents, a shortcoming of a small cycle
is to show repeatedly the same node at different places in
a document, with a possible confusion on the role of each
occurrence. In the previous example, Eastwood and Unfor-
given both appear twice, each time in a different context.
This may be misleading to the user, and results in an appar-
ent lack of generality.

The instance can be extended to longer cycles of size
k × n, where n is the cycle size in the graph schema and
k ≥ 1 is a parameter of the system. Figure 4.a shows a
minimal cycle in our sample instance, and Figure 4.b its
generalization to a cycle of length k × n.

Observe that the occurrence of a cycle in the graph
schema implies the occurrence of a cycle in the canoni-
cal instance, otherwise the instance would not be complete.
In case of a path without cycle, the two extreme nodes
would be left without “corresponding node”, and the ability

49

b. Cycle of size k*2

Woody Allen

Husbands and Wives

Sidney Pollack Robert Redford

...Jeremiah Johnson

Director
Cast

Unforgiven

Clint Eastwood

Director Cast

a. Minimal cycle (2 edges)

Figure 4. Cycle in a canonical instance

to build a canonical document from these nodes would be
compromised.

The production of a canonical instance must ensure that
the required properties are verified. If only cycles of min-
imal size are to be constructed, then the construction al-
gorithm is straightforward: a node is instantiated for each
node type of the schema, and an edge between these nodes
is instantiated for each edge type in E. We describe in the
following a more sophisticated algorithm that takes into ac-
count an expansion factor k for cycle size.

The algorithm maintains a global array nodesr for
each node type r of the schema. nodesr contains the
sequence of instances built by the algorithm, denoted
nodesr[1], nodesr[2], etc. The algorithm returns a path
r1.e1.r2.e2. · · · .rn, ri ∈ V and ei ∈ E, extended at each
recursive call, and representing nodes and edges created
during function calls. We use two auxiliary functions on
paths:

1. dist(path, r) returns the number of steps in path since
the first occurrence of a node of type r;

2. nb(path, r) returns the number of occurrences of a
node of type r in path;

The algorithm takes as input a node N , the type e of
the edge to create, and the path created since the initial call.
The global variable K denotes the minimal size required for
a cycle.

CONSTRUCT (N , e, path)
Input: N ∈ VI , a node, e an edge type such that

N is an instance of initial(e), path the path.
begin

// We extract the type of the terminal node of e

r := terminal(e)
// If it is the first time we reach r in the path:
// we take the first node of r
if (r �∈ path) then ir := 1
// If the first occurrence of r in the path is at distance
// greater than K : the size of the cycle is satisfying, and
// again we take the first node of r
else if (dist(path, r) ≥ K) then ir := 1
// Otherwise, we use a new instance of r, that does not occur
// in the path
else ir := nb(r, path) + 1

// Now ir denotes the current instance of nodesr

if (nodesr[ir] exists)

GI+ = N
e→ nodesr[ir] ; GI+ = nodesr[ir]

e−1→ N
// Stop here: no recursive call needed

else
// Instantiate a new node nodesr[ir], and create the
// corresponding edge
nodesr[ir] := new(r);

GI+ = N
e→ nodesr[ir] ; GI+ = nodesr[ir]

e−1→ N
// Now, recursive calls are needed, one for each possible
// path from nodesr[ir]
path := path + e.r
for each e in E with initial(e) = r and terminal(e) �= N

CONSTRUCT(nodesr[ir], e, path)
end for

end if
end

Algorithm CONSTRUCT must be called for each con-
nected component of the graph schema, taking any relation
node type in each component as a starting point for the in-
stance creation.

This algorithm builds a synthetic canonical instance,
with somehow meaningless node values. In practice, rely-
ing on a real instance would yield more user-friendly node
values. However there is no guarantee to find a canonical
instance into a real instance. In that case it is necessary to
complete the instance with synthetic values, or to link arti-
ficially existing but unrelated values.

We implemented a web-based editor and query system1

for our publication model. The system allows to build
canonical documents, derives their associated DOCQL
queries and may either immediately evaluate the query on
a real instance, or save the query as a named dynamic frag-
ment which can later on be composed with others.

4 Related work

Using graphical interfaces for expressing queries is an
old concerns. The early language Query By Example

1Publicly accessible on the site http://www.lamsade.dauphine.fr/rigaux/docql

50

(QBE) [11] addresses the main principle of such visual
tools: the query expression is based on an image of the re-
sult. QBE and its variants remain oriented toward the ex-
pression of relational queries, and deliver relational tables
as result.

The “by example” paradigm has been adapted and ex-
tended to semi-structured data and XML document by
many proposals: QSByE [4], QURSED[8] and XQBE [2].
QURSED is a web form and report generator, dedicated to
the querying of semi-structured data. XQBE proposes an in-
terface to automatically generate XQuery queries. All these
tools help users to construct complex queries over directed
labeled trees. Queries are displayed with a graph-based rep-
resentationIn contrast, in our approach, the user does not
manipulate a query but a query result. This limits the tech-
nical knowledge required from the user, and favors the inte-
gration of our tool with document editors.

An implementation of our model could take advantage of
keyword-search techniques in relational database [5, 9, 7].
Applied to a canonical instance, they could probably deliver
a non-ambiguous graph of representative nodes/tuples. This
supports our belief that an interface based on alternative de-
sign principles is possible.

The publishing language which constitutes the target of
our publishing process can be related to XML publishing.
The specification of the exported data is usually expressed
as a tree of co-related SQL queries and can be viewed as an
abstraction of nested cursors over result sets. This is quite
similar to the publishing mechanism adopted in the present
paper. One can therefore envisage to adapt our example-
based approach to XML publishing languages.

Finally we note that our data model is closely related to
the field of functional dependencies. In particular the con-
cept of canonical instance shares with Armstrong relations
its motivation of building a representative instance to assist
the end-user in his designing tasks (see, in particular, [1]).
Although we could have used this standard framework in a
more direct way, we believe that the tailored approach cho-
sen in the current paper fits more intuitively to our goals.
In particular the graph-based representation is much more
intuitive to the non-expert user than the scattering of infor-
mation in relational tables.

5 Conclusion

We propose in this paper a simple and intuitive method
for producing publishing programs. We described the
formel model which states the main concepts and specially
those of canonical documents and canonical instances.

Our publish-by-example mechanism is implemented and
we are currently validating our tool with respect to an ac-
tual data-intensive web application (namely the MYRE-
VIEW system, http://myreview.lri.fr) to check its ability to

produce and maintain the set of dynamic fragments that
constitute the view (presentation) part.

References

[1] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On
the Structure of Armstrong Relations for Functional
Dependencies. J. ACM, 31:30–46, 1984.

[2] D. Braga, A. Campi, and S. Ceri. XQBE : A Visual
Interface to the Standard XML Language. ACM Trans.
on Database Systems, 30:398–443, 2005.

[3] Macromedia ColdFusion MX 7, 2007.
http://www.adobe.com/fr/products/coldfusion/.

[4] Irna M. R. Evangelista Filha, Alberto H. F. Laen-
der, and Altigran Soares da Silva. Querying Semi-
structured Data By Example: The QSByE Interface.
In Workshop on Information Integration on the Web,
pages 156–163, 2001.

[5] G.Bhalotia, C.Nakhe, A.Hulgeri, S.Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in
databases using BANKS. In Proc. IEEE Intl. Conf. on
Data Engineering (ICDE), pages 431–440, Washing-
ton, USA, 2002. IEEE Computer Society.

[6] S. Guéhis, P. Rigaux, and E. Waller. Data-driven
Publication of Relational Databases. In Proc. IEEE
Intl. Database Engineering & Applications Sympo-
sium (IDEAS’06), 2006. Also in BDA’06.

[7] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In Proc.
Intl. Conf. on Very Large Data Bases (VLDB), pages
670–681, Hong Kong, China, 2002.

[8] Y. Papakonstantinou, M. Petropoulos, and V. Vassa-
los. QURSED: Querying and Reporting Semistruc-
tured Data. In Proc. ACM SIGMOD Symp. on the
Management of Data, 2002.

[9] S.Agrawal, S.Chaudhuri, and G.Das. Dbxplorer: A
system for keyword-based search over relational data-
bases. In Proc. IEEE Intl. Conf. on Data Engineer-
ing (ICDE), pages 005–016, Los Alamitos, CA, USA,
2002.

[10] S.Ceri, P.Fraternali, A.Bongio, M.Brambilla,
S.Comai, and M.Matera. Designing Data-Intensive
Web Applications. Morgan-Kaufmann, 2002.

[11] Moshé M. Zloof. Query-by-example: A data base lan-
guage. IBM Systems Journal, 16(4):324–343, 1977.

51

