
Facing Interaction-Rich RIAs: the Orchestration Model

Sandy Pérez, Oscar Díaz
ONEKIN Group, University of the Basque Country

San Sebastián, Spain
sandy-perez@ikasle.ehu.es, oscar.diaz@ehu.es

Santiago Meliá, Jaime Gómez
IWAD Group, University of Alicante

Alicante, Spain
{santi,jgomez}@dlsi.ua.es

Abstract

Promptness, efficiency and stickiness are among the ad-
vantages exhibited by the new crop of Rich Internet Appli-
cations (RIAs). These advantages came at the cost of in-
creasing the complexity of development. Additionally, the
plethora of RIA frameworks can lock this code into a spe-
cific platform. This scenario advises for using model-driven
development (MDD). This paper focuses on interaction-
rich RIAs by addressing two issues: (1) interaction depen-
dencies among widgets, and (2) grouping of widgets into
Ajax pages. These concerns are captured in the Orches-
tration Model. MDD wise, OO-H metamodels accounts
for the PIMs whereas Google Web Toolkit is the selected
PSM. During transformation, a “message broker” pattern
is introduced to decouple widgets from their dependencies.
When Ajax pages are generated, heuristics are introduced
to find a balance between communication overhead, presen-
tation readiness and maintainability. A running example is
used throughout.

1. Introduction

Rich Internet Applications (RIAs) strive to leverage the
Web with the engaging interactivity found in traditional
desktop applications. Combined with the Software-as-a-
Service (SaaS) delivery model, web applications are em-
powered to compete with desktop interfaces [3]. Moreover,
RIAs provide a new client-server architecture that reduces
significantly the network traffic using more intelligent asyn-
chronous requests. Faster performance, readiness and en-
gaging interactivity are the hallmarks of this new crop of
applications such as Google’s GMail, Google’s Docs or Ya-
hoo!’s Mail.

The web engineering community is well-aware that RIA
development imposes new stringent demands to traditional
methods [22]. On one hand, it must introduce/enrich mod-
els that account for the new concerns raised by RIAs. On
the other hand, the youth of the area advises to use model-

driven approaches to abstract away from the plethora of
RIA platforms currently competing to find their way. In
this context, this paper focuses on the interactivity wealth
brought by RIAs. Specifically, we strive to find systematic
engineering principles to (1) define interaction dependen-
cies among the GUI widgets and (2) grouping of widgets
into Ajax pages. Other main concerns such as data replica-
tion [7] are outside the scope of this work.

Interaction Dependencies. Traditional GUI method-
ologies advise to begin with a mock-up of the interfaces
to be presented to the user. IDEs such as Visual Studio and
JDeveloper follow such approach providing first a design of
the pages which are next enriched with the supported func-
tionality and content. Model-driven web methods tend to
use a similar manner where a first draft of the presentation
is generated after the navigation model. This draft is then
enriched with presentation concerns. However, describing
such mock-ups for RIAs is a more demanding process. The
wealth of an Ajax page can not be captured by just a GUI
mock-up as those generated by Visual Studio and the like.

Grouping of widgets. The page is traditionally both the
unit of delivery and the unit of presentation. However, this
is no longer so in RIAs. The fat-client approach that charac-
terises RIAs permits a single page to convey the interactiv-
ity that would have required multiple pages in a traditional
setting. This recommends to distinguish between “page” as
the unit of delivery from “screenShot” as the unit of render-
ing (i.e. the set of artefacts being simultaneously rendered).
This defines a spectrum on the way presentation is deliv-
ered. At one end of the spectrum is to equate page and
screenShot (i.e. the traditional approach). The other end
is the single-page approach where all screenShots are em-
bodied in a unique page (e.g. Google’s GMail, Reader or
Maps follow this pattern). However, something in between
is also possible. For instance, the website www.a9.com is
distributed among distinct Ajax pages.

This paper addresses how existing model-based web
methods can account for these two issues. Basically, the
Presentation Model specifies the application screenShots.
This model is then complemented with an Orchestration

1

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.12

24

Model that captures the interaction dependencies among
presentation widgets. In turn, such relationships guide the
designer to distribute the screenShots among Ajax pages.
Although the approach is illustrated for the OO-H method
[13], the insights can be easily extrapolated to other meth-
ods.

As an additional contribution, an MDD approach is
followed. OO-H metamodels accounts for the Platform
Independent Models (PIM) whereas Google Web Toolkit
(GWT) [14] is the selected Ajax platform (i.e. the Platform
Specific Model or PSM). During transformation, a “mes-
sage broker” pattern is introduced to decouple widgets from
their dependencies and in so doing, bringing the advantages
of “separation of concerns”. Furthermore, distribution of
widgets among Ajax pages is addressed through heuristics
that attempt to find a balance between communication over-
head, presentation readiness and maintainability. A running
example is used throughout.

The paper begins with an outline of the whole process to
better frame the role of the Orchestration Model.

2. An MDD process for RIAs

The attractive interactions exhibited by RIAs came at
the cost of increasing the complexity of development. Fur-
thermore, the plethora of RIA frameworks can lock this
code into a specific platform and to make things worse, this
framework is likely to evolve due to the youth of the tech-
nology. This advocates for MDD.

MDD achieves decoupling by creating distinct (meta)
models of a system at different levels of abstraction. Then,
transformations are applied that eventually produce code.
Hence, direct code programming is substituted by first mod-
elling, next transforming. This permits facing development
complexity by distributing concerns among distinct models
and different abstraction layers while decoupling from tech-
nological subtleties.

MDD focuses on the construction of models, specifica-
tion of transformation patterns, and automatic generation of
code. For our case, the main models include:

• the Conceptual Model, which indicates the main enti-
ties and relationships found in the application domain.
It addresses which data is to be handled.

• the Navigation Model, which specifies the data to be
presented (as a view on the Conceptual Model) and the
order in which this data is to be presented. It considers
sequencing and data flow.

• the Presentation Model, which considers data render-
ing and layout. It introduces the notion of widget and
screenShot.

• the Orchestration Model, which addresses widget co-
ordination. It introduces the notion of orchestral wid-
get, SignalBroadcast, SignalHandler and page.

• the Google Web Toolkit (GWT), which is a PSM for
RIAs. Within this framework, a message-broker archi-
tecture is generated through transformation from the
previous models.

The GWT code is obtained through transformation. Indeed,
MDD conceives development as transformation chains
where the artefacts that result from each phase must be
models. SPEM (Software Process Engineering Metamodel)
is a notation for defining processes and their components
whose constructs are described in UML notation [19].
Hereafter, SPEM terminology is used to specify the mile-
stone, roles and dataflow that go with producing a RIA us-
ing OO-H. Stereotypes are introduced to account for MDD
specificities. Specifically,

• actor stereotypes are introduced to account for the
manner a transformation can be conducted: automatic
(< <gear> > stereotype) or manual (< <hand> >
stereotype),

• activity stereotypes are supported to model different
types of transformations: PIMToPIM, PIMToPSM,
PIMToCode, PSMToCode, etc.

Figure 1 outlines the OO-H process. First, the OO-H De-
signer defines the Conceptual Model which serves as in-
put to obtain the Navigation Model. The latter in turn
serves to generate a first skeleton of the Presentation Model.
This draft is then completed by the UI Designer using
VisualStudio-like tooling (i.e. conceiving the page as a
screenShot).

RIAs detach the unit of delivery (i.e. a page as the result
of an HTTP request with an addressable URL) from the unit
of presentation (i.e. a set of widgets simultaneously avail-
able or screenShot). In so doing, allows different ways of
distributing the widgets into a single page or different pages.
Some Ajax applications have only one page (e.g. Google’s
Mail) whereas other Ajax applications go for several pages
(e.g. a9.com). However, additional information about wid-
get dependencies is required to assess how screenShots will
be finally grouped into pages. This is the matter of the Or-
chestration Model.

The Orchestration Model captures interaction dependen-
cies among presentation widgets. Using state machines,
widgets are modelled as states. These widgets can react to
events raised directly by the user. Additionally, some wid-
gets can be affected by operations conducted in other wid-
gets leading to interaction dependencies. This provides the
desktop-like interactivity that characterises most RIA. No-
tice however, that the Orchestration Model is not defined

25

Figure 1. An MDD Process for RIA (OM stands for Orchestration Model).

from scratch (see Figure 1). A transformation model-to-
model (i.e. Pres&Nav2Orch) obtains a first skeleton which
is later enriched by the Orchestration Designer with the in-
teraction dependencies.

Once interaction dependencies are manually specified,
an automatic transformation takes this information to gen-
erate a new Orchestration Model but now, enhanced with
pages. The tag value “pageTag” is used to mark those
screenShot states that are going to be packaged into a single
Ajax page. The transformer provides a first packaging that
is later validated/extended by the Orchestration Designer.

The validation of the Orchestration Model completes
the specification of all models. Now, a model-to-code
transformation obtains a first skeleton of the GWT project.
Unfortunately, the whole application can not be fully ob-
tained from the models. Specifically, widget dependencies
require events to be propagated through signals. This
implies a mapping between event parameters and signal
parameters that we could not derive automatically from
the models, and needs to be provided by the user. This
mapping is supported as a transformation parameter so
that it can be reused in posterior transformations. Next
sections introduce the details with the help of a sample case.

Figure 2. Mail’s Conceptual Model

3. A running example

A common example of interaction-rich RIA is the Mail
application. For completeness sake, next paragraphs intro-
duce the main models for this case. OO-H notation is used
although the insights can be easily extrapolated to other
methods.

Conceptual Model. Figure 2 depicts the Conceptual
Model for our sample case. This model represents the do-
main entities and their relationships, free from any technical
or implementation details. MailUser and Message capture
data about users and their e-mail messages, respectively.
The e-mails are stored in Folders which permits to classify

26

Figure 3. Mail’s Navigation Model.

the e-mails according to an established criterion (e.g. re-
ceived e-mails are stored in the “inbox” folder, sent e-mails
in the “sent” folder, etc.).

Navigation Model. This model establishes the most
relevant semantic paths along the domain space providing
views upon the Conceptual Model. Figure 3 depicts the
Navigation Model for our sample case. The navigation
starts with the Login navigationalClass where MailUser
verifies his credentials by enacting the signInLink link
(called serviceAssociation link in OO-H parlance). If sat-
isfied, the user moves to a different context where the user
is presented with data required to send e-mails. This data
is gradually presented through the so-called navigational-
Class. First, the User navigationalClass provides the name
and e-mail of the MailUser and shows him automatically a
set of his own Folders (SelectedFolder). A specific folder
can now be selected to obtain the content of this folder
(i.e. HeadMessage navigationalClass). By selecting a
HeadMessage, the user moves to CompleteMessage.

Presentation Model. The Presentation Model is made
up of a set of screenShots. A screenShot is used like a con-
tainer that allows the UI Designer to realize a spatial dis-
tribution of different widgets rendered at a given moment.
There are two kinds of widgets: (1) simple widgets (e.g.
Button, TextBox, Label, etc.) and (2) containers that can
contain other widgets (e.g. Tree, Panel, etc.). Figure 4 de-
picts the MailReader screenShot for our sample case. A

root panel is divided into three areas: NORTH that con-
tains the heading; WEST, which keeps the menu; CENTER,
which holds the widgets for e-mail handling1.

The Presentation Model is just a static representation of
the widgets as structural components of a page. But widgets
do not only render content, they can also have an interactive
side. Indeed, this is one of the added-value of RIAs. Next
section delves into the details.

4. The Orchestration Model

The Orchestration Model captures interaction dependen-
cies among widgets. However, not all widgets are liable to
be orchestrated. Widgets can play different roles in the Pre-
sentation Model. Some widgets just render some static con-
tent (e.g. on the right upper corner of the figure 4, widgets
that show the user’s name and e-mail), other widgets can re-
alize navigation (e.g. on the right upper corner of the figure
4, the Hyperlink widget with the text “Sign Out”). Here,
the focus is on widgets that support a functional unit of in-
teraction (e.g. displaying e-mails) liable to be orchestrated
with other units. An “orchestral widget” provides a unit of
interaction with the user to achieve a meaningful task (e.g.
sending an e-mail). Orchestral widgets are the subject mat-
ter of the Orchestration Model.

RIA applications are characterised by a rich-interaction
setting that surpasses the boundaries of a single widget to
spread along distinct widgets. This allows widgets to react
to actions not directly related to a user interaction with this
widget. Interactions on a widget A can also affect a nearby
widget B. Indeed, inter-widget interactions embody impor-
tant interaction patterns about how widgets can be synchro-
nized.

The “separation of concerns” motto advises orchestra-
tion to be modelled and supported independently of the wid-
gets themselves: widgets are seen as black-box components
where an orchestration template is superimposed to provide
additional interactivity. Orchestration is then an orthogo-
nal concern from widgets themselves: distinct orchestration
templates can be provided from the very same Presentation
Model (where widgets are defined).

Orchestration is modelled through UML behavioural
state machines [20]. This comes as no surprise since the
use of state machines (and their neighbours, statecharts) is

1On the top side of CENTER, a CustomWidget called Navigational-
Grid, shows the message headings using a paging mechanism. Properties
of this widgets accounts for paging data (i.e. size, previous and next). The
NavigationalGrid is associated with the HeadMessage navigationalClass,
and supports message retrieval and displayal of the fields for each head
message (i.e. nameSender, emailSender and subject). On the bottom side,
two HTML widgets show the content of the selected e-mail being associ-
ated with a CompleteMessage navigationalClass: the widget above shows
the heading of the selected message while the widget below shows the
content.

27

Figure 4. Mail’s Presentation Model.

Figure 5. Mail’s Orchestration Model: first skeleton.

28

common for modelling hypermedia applications [10], web
service composition [4, 8] and reactive systems.

Figure 5 shows a skeleton2 Orchestration Model as gen-
erated from the Presentation Model in Figure 4. The ap-
plication is represented as a non-orthogonal composite state
stereotyped as < <RIA> > (i.e. the root of the statechart).
Every screenShot derived from the Presentation Model is
modelled through a state stereotype: < <Screen Shot> >. If
the page contains no orchestral widget then, its state coun-
terpart will be atomic (e.g. Login page). Otherwise, an
AND state is defined that encompasses a state for each or-
chestral widget which can be simultaneously rendered in
this state (e.g. MailReader state). Notice that widgets other
than orchestral do not have a counterpart in this model.

This skeleton is then enriched with interactive dependen-
cies by the Orchestration Designer. As example, consider
the following dependencies:

1. if a box in the MailBoxesTree is selected then, the
MailList should be refreshed with the e-mails of the
selected box;

2. if an e-mail in the MailList is selected then, the
MailDetails widgets should be refreshed with the con-
tents of this e-mail, provided the e-mail is not spam.
Otherwise, a confirmation from the user is required;

3. if an e-mail in the MailList is selected then, the
MailSentForm widget should be pre-loaded with this
e-mail’s content.

As this example highlights, now widgets not only react
to direct user interactions but they can also be reactive to
events raised by other widgets.

To capture this functionality, “orchestral transitions”
and “orchestral states” are introduced. Transitions are de-
scribed as “event[condition]/action”. To denote orchestral
transitions, two transition stereotypes are introduced:

• < <SignalBroadcast> >. Rationale: for disseminating
state changes to interested states (i.e. widgets). This
leads to two types of events based on the event source,
namely, user events (i.e. those fired by the user while
interacting), and signals, system events used to com-
municate state changes. A SignalBroadcast transition
is triggered by a user event. However, the associated
action stands for a BroadcastSignalAction [20] (i.e. an
action that raises a signal) where the name and the
form of the signature determine the signal to be fired
by the action.

• < <SignalHandler> >. Rationale: for a state to cap-
ture signals. The difference with traditional transitions
rests on the event that now stands for a signal.

2The initial pseudostate and the final state are introduced in order to be
UML-compliant.

The Orchestration Designer can now use these stereotypes
to capture interaction dependencies. Figure 6 depicts this
situation for our sample case. The first dependency makes
MailBoxesTree and MailList to work in sync: if a box in
the MailBoxesTree is selected then, the MailList should be
refreshed with the e-mails of the selected box. This is
achieved through two orchestral transitions:

• the transition that outgoes the MailBoxTree widget
broadcasts the onSelectBox signal when the onTreeIt-
emSelected event occurs;

• the transition that outgoes the MailList widget is en-
acted by this signal which causes the display of the
e-mails of the selected mail box (through the getMails
action).

However, this synchronization is not always automatic but
additional user interaction can be required for orchestration
sake. This leads to orchestral states (i.e. states whose ratio-
nales rest on some orchestrational purposes). In some case,
these states prompt the user for his acknowledgment. In
other cases, the user needs to resolve parameter mismatches
between the broadcast signal and the triggered action (e.g. if
the parameter of the signal is a set, and the receiving action
is a singleton). These situations are very common so that it
pays off the introduction of the following stereotypes:

• confirm, which serves to verify acceptance from the
user (e.g. supported as a Confirm JavaScript dialog
box).

• alert, of help when we want to make sure that the in-
formation is passed to the user (e.g. realised as an Alert
JavaScript dialog box).

• prompt, which is used when a user’s input value is
required (e.g. implemented as a Prompt JavaScript di-
alog box).

• selectFromRange, of use when there are several op-
tions and only one is permitted (e.g. embodied as a
GWT DialogBox).

Figure 6 resort to the < <confirm> > state to describe our
second dependency: if an e-mail in the MailList is selected
then, the MailDetails widgets should be refreshed with the
contents of this e-mail, provided the e-mail is not spam;
otherwise, a confirmation from the user is required. The
latter is modelled through the < <confirm> > pseudostate:
a choice vertex which, when reached, result in the dynamic
evaluation of the guards of its outgoing transitions.

Interaction dependencies are not restricted to be between
widgets which are simultaneously rendered in the same
screenShot. This is the case of our last example: if an e-mail
in the MailList is selected then, the MailSentForm widget

29

Figure 6. Enhanced Orchestration Model: interaction dependencies are provided by the user & pageTag
values are heuristically suggested by the transformer.

should be pre-loaded with this e-mail’s content. Here, Mail-
List and MailSentForm are placed into two different screen-
Shots. If MailList is the one on display, MailSentForm will
keep receiving MailList’s signals even if hidden. When
MailSentForm’s screenShot turns on display, the fields of
its form will be already filled up with the contents of the
last e-mail being selected by MailList.

This latter mechanism allows for asynchronous param-
eter passing between widgets. Most web methods (e.g.
WebML or OO-H) allow for synchronous parameter pass-
ing as navigational association. By contrast, interaction
dependencies allow for asynchronous passing of parame-
ters while interacting with the current screenShot. When
moving to the next screenShot, one or distinct widgets can

already be initialised as a results of previous interactions.
This approach decouples parameter passing from screen-
Shot navigation, and in our opinion, it is a main departure
from traditional web applications.

At this stage, screenShots and interaction dependencies
are defined. Next issue addresses grouping of screenShots
into pages.

4.1. How many Ajax pages?

RIAs detach the unit of delivery from the unit of pre-
sentation (i.e. a set of widgets simultaneously available).
In so doing, allows different ways of distributing the wid-
gets into pages. Some Ajax applications have only one page
(e.g. Google’s Mail) whereas other Ajax applications go for

30

several pages (e.g. a9.com). This section delves into the cri-
teria that can help the designer in this decision.

A first criterion is to minimize HTTP round-trips. From
this perspective, the fewer the pages, the better. Addition-
ally, having the whole application is a single page will cer-
tainly speed up the enactment of the interaction dependen-
cies so that events from one widget will be readily account
for by the dependant widget. This accounts for readiness
as all interactions are controlled at the client. But it is not
only a matter of promptness. As stated in [1] “this kind of
technique isn’t just pure eye-candy, there has been a fair bit
of research to demonstrate that users perceive the wait time
as the time when nothing is happening on the screen, some
simple animation can make the web application feel faster
even when it’s not”. Improving the user experience is the
final goal.

Therefore, a first heuristic is:

If an interaction dependency exists between
widgets W1 and W2 then, affected screenShots
are candidates to be enclosed in the same page.

When widgets are heavily coupled through interaction de-
pendencies (and this tends to be the case) such heuristic will
lead to the single-page pattern. Most of the Ajax designs
coming out of Google (GMail, Reader, Maps) are single-
page applications. Some implications follow:

• only one URL for the whole application. In Ajax, most
server communication occurs through XMLHttpRe-
quest which do not affect the page URL. Hence, the
application sticks with the same URL no matter how
many transfers occur. The problem is that URLs are
a main mechanism for locating and bookmarking ap-
plication functionality and content which is becoming
even more important with the advent of social book-
marking sites such as del.icio.us. Additionally, the
Back Button and history mechanism of browsers is
based on URL. Changing page content through XML-
HttpRequest will provide the new content but will not
allow the user to go back through the Back Button
which is contra-intuitive for many users. This means
no Back Button and bookmarking facilities [18].

• page size increases. Coarse-grained widgets could af-
fect page downloading time. This can not be an issue
if the cost of widget fetching is spread across user-time
(using asynchronous request). However, this increases
the complexity of the application. Similar remark can
be made for handling user permission across different
part of the application. As this control is now achieved
through JavaScript, it is open to malicious hacking.
While you can always come up with a way to defeat
such attacks, it increases the complexity of the script-
ing.

The URL issue is partially solved in some advanced frame-
works. For instance, GWT provides a history mechanism.
The designer defines “major state changes” as history to-
kens. When the state is reached, the corresponding token is
introduced. When the Back Button is clicked on, the appli-
cation uses the history to recover the previous state. Notice
that this still requires for the designer to define the “major
state changes”. This solution allows for finer-grained book-
marking but search engines still fail to properly index the
URL so generated3.

In summary, the advantages of the single-page pattern
are clear. However, stubbornly sticking with this pattern can
lead to convoluted solutions difficult to develop and main-
tain. Although frameworks such as GWT permit to use Java
(and the associated tooling for testing, documenting, etc)
rather than cryptic JavaScript for client-side development,
similar principles used for Java development should hold
here. And a main principle is modularity.

Hence, page-partition guidelines are required that help
in finding a right balance. To this end, we introduce the no-
tion of “weakest link”. Let S be a graph whose nodes stands
for widgets, and arcs denote interaction dependencies. Both
nodes and arcs can be weight. The weight of a node is the
approximate size of the corresponding widget (e.g. video or
images weight more than raw html). The weight of an arc
is an estimate of the occurrence frequency of the associated
signal (i.e. the higher the frequency, the larger the payoff
to have the corresponding widgets simultaneously available
in the client without involving an HTTP request). Finally,
the weight of a graph is worked out from the weight of its
nodes and arcs. The weakest link is the one that splits the
graph into two subgraphs with similar weight. This process
iterates till the weights of all sub-graphs are below a cer-
tain threshold set by the designer. If the threshold is high,
the algorithm comes up with coarse-grained pages. Finer-
grained pages can be obtained by setting the threshold to
lower values.

Based on the previous observations, the algorithm comes
up with a first partition into pages which is presented to
the designer for validation. Our preliminary insights are
that it very much depends on the application at hand. In
some cases, “fine-grained” pages can cause a minimum de-
lay while easing development and maintainability.

These design heuristics are realised as endogenous trans-
formation rules: the input Orchestration Model is enriched
with a new tag value: pageTag (see Figure 6). The
transformer provides a first packaging that is later vali-
dated/extended by the Orchestration Designer. ScreenShots
with the same pageTag value will belong to the same Ajax

3[18] suggests the use of a Site Map page that links to all the “major
states” (addressable through fragment identifiers, i.e. those optional com-
ponents of URLs that follows the # character) that want to be indexed with
the link text containing suitable description.

31

page. Otherwise, they are kept in different pages, and
hence, moving among them requires a new server request.

The validation of the Orchestration Model completes the
specification of all models. Next section addresses the gen-
eration of code from the Orchestration Model using Google
Web Toolkit (GWT) as the technological platform. The fo-
cus is on client-side code.

5. Down to code: generating code for the
Google Web Toolkit

The Orchestration Model captures interactive richness
through interaction dependencies. These dependencies
have a scope (i.e. the enclosing context that contains the
widgets tightened by the dependency). The scope can
be “screenShot”, “ajaxPage” and “application” based on
whether the widgets belong to the same screenShot, the
same Ajax page or rather, and they are distributed among
distinct Ajax pages, respectively.

Different dependency scopes will lead to different cod-
ing. This section focuses on GWT code generation for de-
pendencies with scope “screenShot” and “ajaxPage” which
can be handled with client scripting. By contrast, the “appli-
cation” scope also involves server programming, and hence,
it is left outside this paper’s content. The section begins
with a brief on Google Web Toolkit (GWT).

5.1. An outline on GWT

GWT is an open source Java software development
framework whose most outstanding feature is that it allows
Ajax applications to be thoroughly coded in Java without re-
sorting to JavaScript. When the application is deployed, the
GWT compiler translates the Java application to browser-
compliant JavaScript and HTML. This is a main departure
compared with other Ajax frameworks.

A GWT application is enveloped into Java packages
where client and server artefacts are kept. We focus on the
client side. A GWT application has a configuration file,
App.gwt.xml, which is used to define the entry-point class,
compiler directives, the application module and dependen-
cies with other external modules. The entry-point class is
executed when the module loads into the browser. Some
elements (e.g. html or jsp pages, stylesheets, images, and
so on) of a GWT application must be included in the pub-
lic folder and only one of them, an HTML page (App.html),
is required. This HTML page is in charge of loading and
executing the application.

GWT applications arrange Java code into two categories:
(1) those that will be compiled into JavaScript to be exe-
cuted at the client side (at least one is required, App.java)
and (2) those that will be compiled into bytecode to be ex-
ecuted at the server side. To this end, a GWT application

contains two scripts: App-compile.cmd and App-shell.cmd.
The former executes the Java to JavaScript compiler. App-
shell.cmd launches the application by executing the hosted
browser that ships with GWT.

As stated in previous sections, Ajax pages can break the
browser’s Back Button. GWT overcomes this pitfall through
the so-called History object. This object behaves as a bread-
crumb record: when the application reaches a certain state
a token is left in the history so that we can emulate the Back
Button functionality by going backwards through the token
history. The history also supports a special widget called
Hyperlink4 that permits to move among screenShots pack-
aged in the same Ajax page.

5.2. Client-side architecture

This section introduces the main classes and relation-
ships that support the Orchestration Model at the client side.
The Orchestration Model strives to separate widget func-
tionality from widget dependencies so that each concern can
be conceived, developed and maintained as separate as pos-
sible.

To this end, a first approach would be the use of the Ob-
server pattern where the subject (publisher) notifies every
observer (subscriber). That is, widgets that publish events
must notify all those widgets interested in such events. Such
an approach, defeats the transparent principle whereby co-
ordination should go unnoticed for those widgets participat-
ing in the coordination. Furthermore, it jeopardizes main-
tainability as the system would quickly explode into an un-
manageable number of cross-widget relationships, resulting
in integration spaghetti.

A more decoupled approach is offered by the “message
broker” pattern which is widely adopted in EAI (Enterprise
Application Integration) for message routing [15]. In this
pattern, a central Message Broker receives events notifica-
tions, determines the correct destinations, and routes the
events to the correct destinations.

Figure 7 shows the class diagram for this pattern. Wid-
gets can play two compatible roles: Subscriber and Pub-
lisher. Available GWT widgets have a pre-established set of
events they can react to. By introducing the Subscriber role,
widgets can be notified of events other than those directly
derived from user interactions. On the other side, GWT
widgets are isolated components where their actions are
limited to the widget itself. The role Publisher extends this
behaviour by allowing widget events to be propagated out-
side this widget’s realm. Additionally, the broker is made
unique in the system (along the lines of the Singleton pattern
[12]) which eliminates the need for subscribers and publish-
ers to have a reference to the broker.

4If we want a normal hyperlink to another HTML page then, we must
use the HTML widget rather than the Hyperlink widget.

32

Figure 7. Class diagram for supporting inter-
action dependencies in GWT

From a maintainability perspective, the benefits of this
pattern includes easy addition/removal of dependencies be-
tween widgets, and “separation of concerns” between the
functionality of the widget themselves and their interaction
dependencies.

5.3. From the Orchestration Model to
GWT using MOFScript

A web application is embodied as a GWT application.
This section focuses on the model-to-code transformation
that obtains GWT-based Ajax pages from screenShot states
in the Orchestration Model. Table 1 outlines the mapping
between constructs of each model.

First, a page (i.e. a compound of screenShots) outputs a
GWT module. This module encompasses a Java class for
each < <Screen Shot> >. Figure 8 provides a snippet of
the generated code. A class MailClientPage is generated
from the namesake pageTag tag value in the Orchestration
Model. This class implements the interfaces EntryPoint (i.e.
making it an Ajax page) and HistoryListener (i.e. providing
bookmarking facilities). The latter implies that this class
recognises different “major state”. These states are sup-
ported as tokens on the history, and so are they declared (see
8(a)). In this example, MailClientPage defines two major
states, namely, MailReader and MailSender that stand for
the namesake screenShots. This implies that Back Button
facilities will be provided to go back and for between these
two screenShots.

Besides widgets and panels, this GWT module also
contains a special Java class: the Message Broker.
This broker regulates the interaction between publishers
and subscribers. This role is played by < <Orchestral
Widgets> >. If an < <Orchestral Widget> > has a
< <SignalBroadcast> > transition then, its Java class coun-
terpart should implement the Publisher interface. Likewise,

Figure 8. MailSender and MailReader screenShots
from the Orchestration Model (see figure 6) map
into the same Ajax page in the GWT PSM.

if an < <Orchestral Widget> > has a < <SignalHandler> >
transition then, its Java class counterpart should implement
the Subscriber interface.

The former case is illustrated for the MailBoxesTree
widget (see Figure 9). This < <Orchestral Widget> > has
a < <SignalBroadcast> > transition. Hence, the Mail-
BoxesTree class implements the Publisher interface. A tran-
sition is specified as event[condition]/action. The event be-
comes the selector of the method. The condition outputs a
condition statement in the method’s body. Finally, the ac-
tion produces the publishing of a namesake signal through
the Message Broker. Additionally, this action produces a
namesake class that implements the Signal interface.

The subscriber case is exhibited by the MailList state
which has a < <SignalHandler> > (see Figure 10). Hence,
the MailList class implements the Subscriber interface. The

33

Orchestration GWT
Page - A GWT module that contains a set of screenShots and has a MessageBroker.
ScreenShot - A simple panel in the module’s entry point class,

- a token in the History
- and a Java class implementing the screenShot.

Orchestral Widget - A Java class implementing the widget that...
[if has SignalBroadcast transitions] –> implements Publisher interface.
[if has SignalHandler transitions] –> implements Subscriber interface.

Transition - Inter-page navigation: traditional navigational links.
- Inter-screenShot navigation inside the same page: the token in the History changes.

SignalBroadcast - A new Java class is created, if it does not exist, that implements the signal.
- The Java class that implements the widget is modified in order to implement the cor-
responding listeners.
- In the corresponding listener’s method...

- [if the transition has constrains] –> if statements are created,
- a signal object is created using the SignalFactory class,
- signal’s attributes are given values
- and the MessageBroker is notified of the signal.

SignalHandler - In the constructor of the class that implements the widget...
- some code is introduced in order to subscribe the widget to the signal.

- and the processEvent method is added where...
- the content of an if statement will process the signal.

Choice pseudostate - In the processEvent method, an if statement (or if-else if there are at least two outgoing
transitions) is added.

Confirm - In the processEvent method...
- a JavaScript confirm dialogue box is added
- as well as an if-else statement, where if will be executed if user clicks on Yes

and else when user clicks on No.
Alert - In the processEvent method, a JavaScript alert dialogue box is added.
Prompt - In the processEvent method, a JavaScript prompt dialogue box is added.
SelectFromRange - A new Java class is created, which extends the DialogBox class. This specialized

DialogBox will be a modal dialog box and it will allow the user to select one option
from a range.
- In the processEvent method, a call to the created Java class is added.

Table 1. Mapping from the Orchestration Model to GWT code.

constructor of the class includes some code to subscribe to
the corresponding signal. The transition’s condition outputs
a conditional to be satisfied before processing the signal.
Finally, the transition’s action is mapped into a call to the
business logic.

6. Related work

Web modelling approaches, which were originally
intended for traditional web applications, are now being
updated to take into account RIAs’ specificities. To the
best of our knowledge, these efforts have been mainly
conducted for WebML and OOHDM (see Table 2).

WebML. This method is mainly focus on data-intensive
web applications. It is then a natural evolution for WebML
to tackle how data can be distributed between the client and
the server in RIAs. This issue is first posed in [5], and next,
further developed in [7] where they provide some insights
about using a push or a pull approach to keep replicated data
in sync.

As for sophisticated interaction modelling, [9] extends
WebML’s “hypertext model in the small” with the notion
of “computation sequence”. Computation sequences play
a similar role to our “interaction dependencies”: keeping
“content units” (i.e. WebML abstraction for widgets) in
sync. Computation sequences are associated with links so
that when “a link is navigated, the dynamic model dictates

34

Figure 9. MailBoxesTree widget maps into a
namesake class which implements the Pub-
lisher interface.

explicitly the effects on all the components of the page” [9].
The difference stems from the coupling. In computation se-
quences, the triggering widget (i.e. the link) knows about
the triggered widgets (i.e. content units). By contrast, our
approach uses a broker to decouple both concerns. This
accounts for maintainability. For instance, if a new wid-
get is to be somehow synchronized, WebML will require
to change the involved computation sequences. In our ap-
proach, this new widget just subscribes to the event. Fur-
thermore, state machines also allows for defining the inter-
action dependency at different level of abstractions. Exam-
ples in the paper always have atomic states -that stand for
orchestral widgets- as the triggering source and, in this way,
it is similar to WebML. However, the triggering source can
also be an AND state. In this case, the occurrence of the
signalling event in any of the enclosed atomic states will
trigger the signal.

WebML presentation does not scale to account for RIA
rich presentation. Hence, recent work is enhancing WebML
hypertext model with RUX [21]. RUX splits presenta-
tion into three models: Abstract, Concrete and Final In-
terface models [17]. Abstract Interface is intended to be
reusable by all RIA platforms. Concrete Interface is split
into Spatial Presentation (specifies the spatial arrangement
and look&feel), Temporal Presentation (allows the speci-
fication of those behaviours which require a temporal syn-
chronization) and Interaction Presentation (models user’s

Figure 10. MailList widget maps into a name-
sake class which implements the Subscriber
interface.

interactions). Finally, Final Interface describes the final
user interface according to RIA selected rendering technol-
ogy. This approach lets RUX support multi-device RIAs.

RUX focuses on stepwise definition of user interaction.
By contrast, our work addresses crosscutting interactions
among widgets. Furthermore, RUX models are XML doc-
uments where hard-coded generators obtain the application
code. Our work stick with MDD practises.

OOHDM. This method proposes the use of ADVcharts
for modelling widget interaction [24]. ADVcharts and stat-
echarts have a similar expressiveness [6], but ADVcharts
are claimed to be more legible. Urbieta et al. also ad-
dresses widget orchestration but here the difference with
our approach is on the implementation side. OOHDM takes
JavaScript as the PSM, and conceives widget coordination
as a crosscut. Hence, an aspect-oriented approach is pro-
posed using [2]. By contrast, our approach realises on the
transformer itself to inlay the cross-cutting coordination us-
ing a broker. This is a more general approach that using as-
pectual programming, and permits the use of existing Java
tooling for testing and documentation, a not neglectable ad-
vantage if we are tackling complex applications.

Outside the web engineering community, HCI work is
also of much relevance here. UsiXML [16] is a user-

35

Orchestration in RIA OOHDM [24] WebML [5, 7, 9] This paper
Orchestral transitions Yes Yes Yes
Orchestral state Yes No Yes
Page partitioning No No Yes
Development approach
MDD-compliant No Yes Yes
Technological Platform XHTML + JavaScript Open Laszlo and Flex* GWT

*Integrated with RUX

Table 2. Related work

interface description language which is applied to RIA in
[23]. This framework structures the development process
along four levels of abstraction (captured as XML files):
Task and Concepts, Abstract User Interface (independent
of any modality of interaction), Concrete User Interface
(independent of any computing platform) and Final User
Interface, which depends on a particular computing plat-
form. Being XML models, moving from one layer to a
lower-abstraction layer is achieved through XSLT transfor-
mations. Besides the development framework (XML vs.
UML/Ecore), the difference rests on the stress given to or-
chestration. Whereas UsiXML captures orchestration some-
how as part of the Concrete/Abstract User Interface, our
claim is that orchestration should be a first concern during
RIA design and as such, capture as a separate model.

The use of statecharts is also common in HCI. StateWe-
bCharts (SWC) [25] is a case in point. SWC is mainly used
to describe navigation between pages (documents) rather
than interaction between widgets (objects). Although SWC
supports both server-side and client-side execution, it does
not support inter-widget interactions. Additionally, SWC
focuses on the design stage, does not address implementa-
tion concerns.

UML’s state machines are also the selected formalism to
support the so-called Guide Model in [11]. As a refinement
of the Task Model, the Guide Model provides navigation
and synchronization details on user interaction. This
is similar to the aim of our Orchestration Model. The
difference stems from the mechanism used to achieve such
orchestration. Guide Model uses “traditional” transitions,
whereas the Orchestration Model resorts to the event broad-
casting mechanism of UML’s state machines. Additionally,
the Orchestration Model views widgets as standalone
components. This implies that widget composition can not
be taken from granted but additional concerns are raised
by gluing widgets together. This is the rational behind the
orchestral states introduced in the Orchestration Model.

7. Conclusions

It is expected that a large number of web applications
will exhibit RIA-like features in the near future. This will
improve the user experience but it will increase the com-
plexity of development too. Such scenario grounds the need
for taking RIA concern in existing web methods.

This paper proposes the introduction of the Orchestra-
tion Model in existing web methods to face interactive-rich
RIA. The use of an MDD approach accounts for facing in a
stepwise manner the different issues risen during orches-
tration, mainly, interaction dependencies and interaction
scope. These decisions are decoupled from the chosen tech-
nological platform. As a proof-of-concept, an MDD pro-
cess is defined using OO-H metamodels as PIMs, and GWT
as the PSM. QVT and MOFScript are used as the model-to-
model and model-to-code transformation languages.

Future research includes gaining further insights on the
partition criteria for page definition that find a balance be-
tween promptness and maintainability. Also, we plan to ad-
dress support for interaction dependencies when split into
distinct Ajax pages (i.e. the scope of the dependency being
“application”).

8. Acknowledgments

This work is co-supported by the Spanish Ministry of
Education, and the European Social Fund under contracts
TIN2005-05610 (WAPO) and TIN2007-67078 (ESPIA).
Perez enjoys a doctoral grant from the Basque Government
under the “Researchers Training Program”.

References

[1] Ajax: Single-page vs. Multi-page. Published at
http://getahead.org/dwr/ajax/single-page-design.

[2] Aspect Oriented Programming and JavaScript. Pub-
lished at http://www.dotvoid.com/view.php?id=43.

36

[3] J. Allaire. Macromedia Flash MX-A next-generation
rich client. Technical report, Macromedia, March
2002.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenz-
erini, and M. Mecella. Automatic Composition of
E-services that Export their Behavior. In 1st Inter-
national Conference on Service Oriented Computing,
2003.

[5] A. Bozzon, S. Comai, P. Fraternali, and G. T. Carughi.
Conceptual Modeling and Code Generation for Rich
Internet Applications. In 6th International Conference
on Web Engineering, 2006.

[6] L. M. F. Carneiro, D. D. Cowan, and C. J. P. Lucena.
ADVcharts: A Visual Formalism for Interactive Sys-
tems. ACM SIGCHI Bulletin, 26:74–77, 1994.

[7] G. T. Carughi, S. Comai, A. Bozzon, and P. Fraternali.
Modeling Distributed Events in Data-Intensive Rich
Internet Applications. In 8th International Conference
on Web Information Systems Engineering, 2007.

[8] F. Casati and M. C. Shan. Dynamic and Adaptive
Composition of E-Services. Information Systems,
26(3):143–163, May 2001.

[9] S. Comai and G. T. Carughi. A Behavioral Model for
Rich Internet Applications. In 7th International Con-
ference on Web Engineering, 2007.

[10] M. C. Ferreira de Oliveira, M. A. Santos Turine, and
P. Cesar Masiero. Statechart-based Model for Hyper-
media Applications. ACM Transactions on Informa-
tion Systems (TOIS), 19(1):28–52, January 2001.

[11] P. Dolog and J. Stage. Designing Interaction Spaces
for Rich Internet Applications with UML. In 7th In-
ternational Conference on Web Engineering (ICWE),
2007.

[12] E. Gamma, R. Helm, R. Johnson, and J. M. Vlis-
sides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional,
1994.

[13] J. Gómez, C. Cachero, and O. Pastor. Conceptual
Modeling of Device-Independent Web Applications.
IEEE MultiMedia, 8(2):26–39, 2001.

[14] Google. Google Web Toolkit (GWT). Published at
http://code.google.com/webtoolkit/.

[15] G. Hohpe and B. Woolf. Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messag-
ing. Addison-Wesley Professional, 2003.

[16] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouil-
lon, M. Florins, and D. Trevisan. USIXML: A User
Interface Description Language for Context-Sensitive
User Interfaces. In Workshop on Developing User In-
terfaces with XML: Advances on User Interface De-
scription Languages at the ACM Advanced Visual In-
terfaces, 2004.

[17] M. Linaje, J. C. Preciado, and F. Sánchez-Figueroa.
A Method for Model Based Design of Rich Internet
Application Interactive User Interfaces. In 7th Inter-
national Conference on Web Engineering, 2007.

[18] M. Mahemoff. Ajax Design Patterns. O’REILLY,
2006.

[19] Object Management Group (OMG). Software Process
Engineering Metamodel, version 1.1. Published at
http://www.omg.org/docs/formal/05-01-06.pdf, Jan-
uary 2005.

[20] Object Management Group (OMG). Unified Mod-
eling Language: Superstructure (version 2.1.1).
Published at http://www.omg.org/docs/formal/07-02-
03.pdf, February 2007.

[21] J. C. Preciado, M. Linaje, S. Comai, and F. Sánchez-
Figueroa. Designing Rich Internet Applications with
Web Engineering Methodologies. In 6th International
Conference on Web Engineering, 2006.

[22] J. C. Preciado, M. Linaje, F. Sánchez, and S. Comai.
Necessity of Methodologies to Model Rich Internet
Applications. In 7th IEEE International Symposium
on Web Site Evolution, 2005.

[23] F. J. Martínez Ruiz, J. Muñoz Arteaga, J. Vanderdon-
ckt, and J. M. González Calleros. A First Draft of a
Model-Driven Method for Designing Graphical User
Interfaces of Rich Internet Applications. In 4th Latin
American Web Congress (LA-Web), 2006.

[24] M. Urbieta, G. Rossi, J. Ginzburg, and D. Schwabe.
Designing the Interface of Rich Internet Applications.
In 5th Latin American Web Congress, 2007.

[25] M. Winckler and P. Palanque. StateWebCharts: A
Formal Description Technique Dedicated to Naviga-
tion Modelling of Web Applications. In International
Workshop on Design, Specification and Verification of
Interactive Systems, 2003.

37

