Eighth International Conference on Web Engineering

A Component Based Architecture for Web Content Management: Runtime
Deployable WebManager Component Bundles

Jurriaan Souer and Martin van Mierloo
GX, Wijchenseweg 111, 6538 SW Nijmegen, The Netherlands
{jurriaan.souer, martin.van.mierloo } @ gxwebmanager.com

Abstract

Customizing Web Applications is complex and result in
possible complications when upgrading. The Web Con-
tent Management system ‘GX WebManager’ offers Web-
Manager Component Bundles (WCBs): a new plug-in sys-
tem for adding custom functionality runtime to the Web Ap-
plication. WCBs consist of three, open source and open
standards based technologies: Open Services Gateway ini-
tiative (OSGi), Java Content Repository (JCR) and Spring
Model View Controller (MVC). In this demonstration we
will show how to build and deploy a WCB based on an
archetype and elaborate on the various forms of applica-
tions. The goal is to allow developers to easily create cus-
tom web applications plug-ins and share their application
with the community on the one hand, and provide a library
of custom functionalities for online business owners.

1 Background

Most public and private sector enterprises, faced with
challenges in satisfying evolving customer needs and meet-
ing regulatory and compliance dictates utilize Web Content
Management (WCM) software to manage content on their
internal and external Web sites. However, many organiza-
tions struggle with the implementation and change man-
agement processes of WCM systems, since the processes
are complex and time consuming [3]. Although the Web
Engineering research field has resulted in several methods
to support the complex task of designing and creating Web
Applications, the research on the implementation of WCM
in the context of Web Engineering is scarce.

The WCM system ‘GX WebManager’ provides web con-
tent management and online functionalities such as per-
sonalization, application integration, multi-channel publish-
ing, search engine optimization (SEO), digital asset man-
agement, online transaction processing, and WebTV for
streaming media. Most of the Web application function-
ality built on the GX WebManager platform is configured

978-0-7695-3261-5/08 $25.00 © 2008 IEEE
DOI 10.1109/ICWE.2008.32

366

without customization. However, online marketers always
want some new functionalities (e.g. Web 2.0, Wiki, Seman-
tic technologies). It is impossible to incorporate all new
technologies within a standardized Web Content Manage-
ment platform hence they are often customized to meet the
business requirements. Customization is one of the most
troublesome processes within WCM implementations. Cus-
tomization can lead to higher implementation costs, longer
implementation time, and could give problems when up-
grading to a new version of the software.

2 Design goals

Confronted with these challenges with our proprietary
WCM system — as described in [4] — we developed the
design goals for the most recent version of GX WebMan-
ager — version 9. GX WebManager should facilitate a solid
migration strategy and should allow for different solution
frameworks (product verticals). Moreover, it should en-
hance customizations. We therefore defined the following
design goals:

e Ease of Development
e Ease of Maintenance
e Ease of Deployment

We will elaborate on these design goals below.
2.1 Ease of Development

Developing custom functionalities should be easy for de-
velopers. Ease of development includes good debugging
support, minimize the effort for adding new functionali-
ties, use standards for development (i.c. Java, JSP), out-
of-the-box support from software development kit Eclipse
+ Webtools, Java and Tomcat, and it should be easy to de-
velop in teams within larger projects. To conclude, it should
be easy to change the graphical user interface of GX Web-
Manager based on standards.

IEEE
computer
® psouety

2.2 Ease of Maintenance

A lot of organizations rely on their Web Applications for
a large part of their business. Downtime for deployment,
upgrades and failure should be minimized. Ease of mainte-
nance consists of good support to analyze bottlenecks and to
see if the issue (e.g. bug or performance) is part of the GX
WebManager platform or the custom developed functional-
ity. It should be possible to change, uninstall or upgrade
functionalities without having to create a new deployment.

2.3 Ease of Deployment

Still, there are situations where new deployments are
needed. However, these deployments should be as easy as
possible to minimize the downtime and to allow different
hosting providers to manage the deployments themselves.
Moreover, easy of deployment encompasses easy deploy-
ment over a complete Development, Test, Acceptance and
Production environment (DTAP support): when a custom
functionality is developed in a development environment
it should be very easy to install it in the Test environment
without any configuration.

3 Implementing the Design Goals

To implement the design goals we introduced a new con-
cept called a WebManager Component Bundle (or WCB): a
plug-in system for adding new functionality at runtime to
the product. WCBs are single (JAR)-files that can be eas-
ily exchanged and deployed on different GX WebManager
installs. WCBs are developed using common Java develop-
ment tools such as Eclipse and Maven. Developers can use
archetypes (a sort of blueprints) to create various types of
WCBs with a single command. This, in combination with a
set of tutorials, videos, forums and a wiki on online devel-
opment community makes it easy to get started.

WCBs incorporate three open technologies which allows
for ease of development, ease of maintenance and easy of
deployment:

e OSGI: The open standard OSGi !, with the implemen-
tation Apache Felix 2

e JCR: The open standard JCR or Java Content Repos-
itory (JSR-170/JSR-283%), with the implementation
Apache Jackrabbit . GX is a member of the JSR-
283 Expert Group and official committer for Apache
Jackrabbit.

Thttp://www.osgi.org
Zhttp://felix.apache.org/
3http://www.jcp.org/en/jsr/detail 2id=283
“http://jackrabbit.apache.org/

367

e Spring MVC: the Model View Controller framework
of the Spring Application Framework 3

The following sections elaborate on these three technolo-
gies.

3.1 OSGi

OSGi technology provides a service-oriented,
component-based environment for developers and of-
fers standardized ways to manage the software lifecycle.
OSGi is a well known technology in the mobile industry,
but is rarely used as a server side technology. OSGi is
used within GX WebManager to manage the lifecycle
of the WCBs, it allows starting, updating, stoping and
uninstalling WCBs at runtime. The OSGi guarantees the
stability (it kills an WCB when its corrupt and makes sure
that the platform is not influenced by the WCB). OSGi
also includes version control which allows for automatic
updates when a new version of the custom functionality
is available. With OSGi, developers can easily develop
their WCB locally and activate it on the Test environment
using OSGi. The runtime deployment aspect and the
stability contributes to the ease of deployment and ease of
maintenance.

3.2 JCR

The Content Repository for Java Technology specifica-
tion, developed under the Java Community Process as JSR—
170 (currently being enhanced in its successor JSR—283)
separates infrastructural services from application services.
This unified API allows access to any compliant repository
in a vendor- or implementation-neutral manner, which will
prevent possible vendor lock-in. The JCR API is a type of
Object Database that stores, searches and retrieves hierar-
chical data and allows true content repository infrastructure
so that different applications can use the same interface for
many purposes, making it universally accessible. A major
advantage of JSR-170 is that it is not tied to any specific
architecture. The back-end data storage for a JSR-170 im-
plementation could be a file system, a WebDAYV repository,
an XML- backed system, or even an SQL database.

Within GX WebManager, the JCR is used as an persis-
tence layer, including the data storage for the WCBs. Devel-
opers will be able to avoid the effort associated with learn-
ing the particular API of each repository vendor. Instead,
programmers will be able to develop content-based appli-
cation logic independently of the underlying repository ar-
chitecture or physical storage. Using a common interface
reduces both times and risk, in so much as a company will
no longer need to rely on any one proprietary repository.

Shttp://www.springframework.org/

3.3 Spring MVC

MVC (Model-View-Controller) is a design pattern that
helps to separate user interface logic from business logic.
Usage of a MVC based library offers a good approach to
render the edit interface of GX WebManager 9 in a way that
is supported by many open source standards. The current
proprietary scripting language can contain both business
logic and user interface logic in one and the same script. For
the implementation GX has chosen the open source Spring
MVC Framework. The inclusion of Spring MVC is the im-
plementation of the design goal that developers should be
able to easily change the user interface of GX WebManager.

In summary, we separated the platform from its func-
tional components in GX WebManager 9 allowing devel-
opers to easy create new functionalities and deploy and
maintain them at runtime. Modifying the platform implies
checking if the other functionalities of the platform are still
intact. Making changes to a component however, implies
only checking if that specific component still behaves as
expected. As a result, the engine of GX WebManager will
have a higher stability and will have a non-changing inter-
face with the components. Only individual WCBs can be
modified and therefore be corrupted. This will have no im-
pact on the complete website in general. In this demonstra-
tion we will show how to build and deploy a WCB based on
an archetype and elaborate on the various forms of applica-
tions.

3.4 Combining the three technologies

This combination of three open standards and technolo-
gies results in a number of interesting characteristics. From
a technical point of view the three technologies provides
Lifecycle management, Persistence, Controller framework,
Runtime deployment, Dependency management, Headless
Services, View and edit presentation, OTAP support and
merge conflict resolution with UUIDs, and Schema evolu-
tion.

But also the different roles in organizations that deal
with web content management can benefit in various ways
from WCBs. The business owner or marketing can quickly
launch new functionality and be innovative. They are no
longer dependant on the supplier’s product roadmap and re-
sources. When a WCB is already available they are even not
dependant on developers. The IT department take advan-
tage from the fact that managing a web content management
system is easier and costs are lower since the platform is
standard and additional functionality is added as standards
based bundles, which have a predictable and protected be-
havior. In DTAP environments functionality and content
can easily be transferred to other servers for testing pur-
poses. And also developers have advantages: working with

368

Visitor request

| Filters
Personalisation
Caching
1 4

JSPs

‘

UI Layer

Web Layer Controllers e.g. Spring MVC

Service Layer 0SGi

- Components
- Services

A

Domain Layer WM Platform APIs WCB APIs

Persistence
wM
ICR

JSR-170

Figure 1. Application Architecture

Data access Layer

I

External
DBs

WCBs is easy to learn because of the use of common tool-
ing (e.g. Eclipse, Maven, Spring MVC, JSPs) and because
there is an active development community. Develoment of
WCBs is aimed at working in teams and reusing compo-
nents and code.

Figure 1 shows the application architecture of GX Web-
Manager. It consists of five layers: the user interface layer,
web layer, service layer, domain layer and the data access
layer. As illustrated, the JCR is used as the persistency stor-
age. The OSGi is part of the service layer and Spring MVC
is used in the Web layer as the MVC framework. WCBs
can access all layers of the application and can be used for
creating user interface (graphical design of a website), the
web layer (for functions and panels), the service layer (for
services and components), the domain layer (to access plat-
form functions and other WCBs) and the data access layer.
Each WCB has its own version number and certification
which is centrally managed.

An example that explains the various stages of devel-
opment and maintenance is a recently developed ‘Calendar
2.0’ WCB. This WCB was developed for a customer that an
adapted calendar that contained more functionality then the
default calendar component. The component required web
2.0 functionality (e.g. customer could enter and share calen-
dar dates) and the persistence had to be open and extendible.
Two developers worked on this WCB: one on the persis-
tence and he created a set of functions that the other devel-
oper could use to store and retrieve information. The sec-
ond focused on the presentation and the business logic. The

panel and elements were created in several minutes from
archetypes (blueprints). A first beta release was added to a
test environment and after several improvements the calen-
dar WCB was taken into production. Additional improve-
ments were added later on and the application manager sim-
ply upgraded the calendar WCB instantly even though the
data model had been changed. From the initial idea to real
life production this example took less than two weeks.

4 Discussion

Web Application Development can still be a complex
task. With WCBs, we separated customized functions from
the application platform itself, thereby improving the over-
all stability of the Web application and implementing the
design goals. The WCBs can currently utilize six APIs
to create customizations. We are improving these APIs to
make even more rich functionalities and easy the develop-
ment process. For example, we recently introduced ‘Ex-
tendability’ as a characteristic of a WCB. Developers can
now take an existing WCB and change it slightly to his
needs without code replication.

Both GX customers and implementation partners have
adopted the WCB technology on a large scale. Customers
benefit from the WCBs because it allows them to quickly
launch new innovations and because their IT management
can safely deploy them on testing and production environ-
ments. Larger customers have created development studios
that create their own WCBs and the option to reuse and in-
herit from WCBs is widely used to keep improving WCBs.
A lot of knowledge and best practices are being shared on
the open development community® where developers from
GX, GX customers and GX partners find and help each
other. Several freelancers have invested time to become
WCB developers and they offer their services on GX De-
veloperweb. Over the last year several customers have even
teamed together to develop WCB in a joined effort. This
clearly shows that the development model is open and that
no one has to rely on GX as a supplier anymore.

A year after introducing WCBs, they have shown to be
successful in its many forms and applications. Even a sim-
ple WCB that displays a Youtube video or Google Maps
can make a difference for a website editor. But also sev-
eral intelligent and productive WCBs have emerged from
GX, implementation partners and customers. Examples are
statistic tooling (Google AdWords management), a multi-
channel WebTV component suite, a performance manage-
ment console, newsfeed imports (Reuters, ANP), a database
management console, advanced calendar, weblogs, etc.

A possible side effect is a WCB Ecosystem. WCBs are
small, single files that can be easily exchanged within orga-

Ohttp://www.gxdeveloperweb.com

369

nizations, or even traded. Independent developers, commer-
cial organizations and partners can use an online market-
place’ to simplify finding, combining or building the right
WCBs for the right solution.

5 Related Work

There are several organizations working on a similar
strategy for component based software. Mozilla Firefox and
Salesforce.com are two well known examples. Also in the
research field, component (or packaged) based software de-
velopment is a popular research area. The extent of soft-
ware reuse depends upon the reuse strategy followed [2].
Two relevant work worth mentioning: Wulf et al describe
a similar problem in software development and a runtime
component-based tailorability in [5]. Arndt et al propose a
composition of customized and component libraries to cope
with the tension of software customization and standardized
software [1].

References

[1] Jens-Magnus Arndt and Jens Dibbern. The tension be-
tween integration and fragmentation in a component
based software development ecosystem. In HICSS ’06:
Proceedings of the 39th Annual Hawaii International
Conference on System Sciences, page 228.3, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[2] Marcus A. Rothenberger, Kevin J. Dooley, Uday R.
Kulkarni, and Nader Nada. Strategies for software
reuse: A principal component analysis of reuse prac-

tices. IEEE Transactions on Software Engineering,
29(9):825-837, 2003.

[3] Jurriaan Souer, Paul Honders, Johan Versendaal, and
Sjaak Brinkkemper. Defining operations and main-
tenance in web engineering: A framework for cms-
based web applications. In IEEE ACM Second Interna-
tional Conference on Digital Information Management

ICDIM 2007, pages 430 — 435, October 2007.

[4] Martijn van Berkum, Sjaak Brinkkemper, and Arthur
Meyer. A combined runtime environment and web-
based development environment for web application
engineering. In Proceedings of the Advanced Infor-
mation Systems Engineering. CAiSE04, pages 307-321.

LNCS 3084, 2004.

[5S] Volker Wulf, Volkmar Pipek, and Markus Won.
Component-based tailorability: Enabling highly flexi-
ble software applications. Int. J. Hum.-Comput. Stud.,

66(1):1-22, 2008.

"http://www.wcmexchange.com

