
Peony: a Web Environment to support pattern-based development

Rosana T. Vaccare Braga
Alessandra Chan

ICMC - Universidade de Sao Paulo – Av do Trabalhador Saocarlense, 400, Sao Carlos, SP, Brazil
{rtvb,alechan}@icmc.usp.br

Abstract

The development of Web applications using software pat-
terns, test requirements, and established processes helps to
increase teams productivity and the final product quality.
However, there is a lack of tools for supporting developers
on the use of software patterns in the several stages of a
development process, beyond assisting the validation of the
reused solutions. Thus, this article presents a Web environ-
ment, named Peony, that aims at facilitating the reuse of
software patterns and test requirements during software de-
velopment. Peony allows the software engineer to include
the development processes followed by the organization,
and to associate patterns to their phases and/or activities,
so that during the development of a particular project the
developer can more easily reuse these patterns. Also, for
each pattern, Peony suggests test requirements for assisting
the validation of applications under development.

1. Introduction

The expansion and popularization of the World Wide
Web have encouraged the development of Web applications.
There is an increasing demand for more complex Web ap-
plications, whose development must be done with quality
and urgency. Several Web development methods have been
created to guide the life-cycle of these applications, as well
as tools supporting their use [10, 12, 5].

The use of patterns in the development of software ap-
plications is also recommended to enhance productivity and
quality [8]. Patterns provide abstract solutions to recurring
problems, and their reuse helps to make application devel-
opment faster. In particular, Web Applications can be built
more easily through the application of navigational patterns
[9], business rules patterns [2], among others [6, 13]. Ac-
cording to Garzotto [9], the design of complex Web applica-
tions can benefit from the adoption of patterns, such as en-
hancing the final product quality, reducing efforts, number
of developers, and development cost. In order to minimize

errors and facilitate use, tools supporting the use of patterns
have been developed [16, 11]. But there is a lack of envi-
ronments and tools supporting their use during all stages of
applications development.

Among the main activities to ensure software quality are
VV&T (Verification, Validation, and Testing) [18]. Some
initiatives have been proposed in a recent work [3] associat-
ing tests to patterns, to minimize the time spent in VV&T.

This paper presents the Peony environment, which aims
at supporting the use of software patterns during all devel-
opment process stages. Therefore, software patterns can be
previously associated with these stages, so they can be sug-
gested to the developer during project execution. Patterns
of several categories, such as design patterns, analysis pat-
terns, human-computer interaction patterns, etc, can be in-
cluded, helping developers to find solutions for problems
found during applications development. Moreover, Peony
offers the possibility to associate test requirements to soft-
ware patterns, helping VV&T activities.

The paper is organized as follows: Section 2 discusses
related work. Section 3 presents the Peony environment.
Section 4 presents the final remarks and future work.

2. Related Work

Several environments have been presented to support de-
velopment processes execution, most of which allow the ex-
plicit representation of a process and its related products, in-
tegrating tools for software development with process mod-
eling tools. Examples of such environments include We-
bAPSEE (Web Process-Centered Software Engineering En-
vironments) [15] and ODE (Ontology-based software De-
velopment Environment) [1]. WebAPSEE eases the model-
ing, execution, and maintenance of software development
processes. Other functionalities are being implemented
to support processes simulation, reuse and instantiation.
ODE is a focus-centered software development environ-
ment, based on ontologies, and used to define a particular
type of process (ODE [7]).

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.48

358

On the other hand, several pattern repositories are avail-
able 1, but it is not straightforward to use them in a sys-
tematic way, because developers would need to search for
the right pattern in various sources, then to decide if they
fit the problem context, the particular process stage being
performed, the organization goals, etc. Some organizations
maintain a repository of frequently used patterns, so that
they are easily available when needed. This also motivated
us to create Peony and make it available on the Web.

3. The Peony Environment

Peony is a Web application that was conceived with
the goal of supporting the search, application, and doc-
umentation of patterns used during the various stages
of a software development process, as well as inform-
ing the test requirements needed to validate the pro-
posed patterns. Peony is available at the following URL:
http://www.labes.icmc.usp.br:8180/alechan/.

3.1. Main functionalities

Peony functionalities (around 168 different use cases)
are divided into three groups: Feeding Peony, Managing
Projects, and Managing Peony. The first group deals with
activities for populating Peony database with available de-
velopment processes (together with their stages, activities,
and respective input and output expected artifacts), software
patterns (together with their elements, solution structure,
etc.), and associated test requirements. The present version
of Peony supports only functional test criteria, namely the
equivalence partitioning and the boundary value analysis,
but other criteria could be included in posterior versions.

In the second group, activities regarding the project
preparation and execution are conducted. Some phases or
activities of a software process can be considered manda-
tory or optional. So, before instantiating a process (through
a project) it is necessary to define its expected phases, ac-
tivities, input, and output artifacts. This is done to adapt the
process according to the project context. Then, the project
is executed and, during it, Peony suggests candidate pat-
terns to be applied and respective test requirements that can
be used to validate them. For example, Fig. 1 ilustrates a
particular project being executed. Notice, in the left lower
panel, the patterns suggested by Peony (more information
about the pattern is supplied just by clicking on it).

The third group provides operations related to the main-
tenance of information contained in Peony, as for example
users management and access control. All activities are per-
formed using the Peony environment itself. Some elements
are mandatory, while others are optional. There are also
validation rules to maintain information consistency.

1See for example the Pattern Catalog at http://www.hillside.net

Peony allows two types of users: software engineers and
administrators, which can play several roles: project man-
agers can include established development process, as well
as their composing phases, activities, and input/output arti-
facts; pattern authors or users can include patterns and as-
sociate them to existing process phases and activities; sys-
tem testers can include test requirements associated to pat-
terns to help validating their instantiation; and developers
(mainly project managers) can include new projects, assign
them to a development process, customize the process ac-
cording to the particular project context, and finally trace
the project execution through Peony, which will suggest
patterns according to the current phase/activity being con-
ducted, as well as the associated test requirements. If devel-
opers decide to use a certain pattern in that phase/activity,
they register this fact in Peony, which also allows the in-
stantiation of the pattern solution to the particular project
(specific Peony tags ”Project Diagrams” and Project Soft-
ware Patterns” are filled in).

Feeding Peony with patterns is our next challenge, as
well as providing a mechanism to control the quality of pat-
terns included. Peony was designed so that the organization
can include patterns of a certain domain and make them
available to all Peony users. Development processes can
be included in a private repository, but can also be made
available to other users. However, only the user who in-
cluded the process (or the system administrator) can change
it. When reusing a process, other users can customize the
Mandatory/Optional attribute of phases/activities to allow
skiping them during project execution.

3.2. Design and Implementation

Peony was developed based on the process for Web de-
velopment proposed by Conallen [5] and the correspond-
ing WAE (Web Application Extension) notation, which pro-
vides an extension to UML based on specific stereotypes for
modeling Web application elements. This process is based
on RUP (Rational Unified Process) [14] and on ICONIX
Unified Process [20] and can be customized according to
each particular project.

During its development, due to resources limitation (a
master student played the roles of system analyst, program-
mer, tester, etc., with the advisor playing the role of cus-
tomer), some stages had to be simplified, while others had
to be included (for example, Conallen’s process did not in-
dicate an activity to develop the database models, but this
was imperative in our case, due to the complexity of the
conceptual model). Nevertheless, most artifacts were pro-
duced aiming at high quality documentation, and they are
described in a master dissertation [4]. Examples of arti-
facts produced were: use case diagram, textual description
of the most important use cases (around 60 in total), concep-

359

Figure 1. Peony - example of its graphical user interface.

tual model, entity-relationship model, activity diagrams for
some use cases, sequence diagrams for the most important
use cases, User eXperience (UX) models for most mean-
ingful user interfaces. Figure 2 shows Peony concept model
(simplified due to space restrictions).

Peony was implemented using Java [21] and the sup-
porting frameworks Hibernate [19] for persistence and ZK
[17] to allow rich user interface. The use of these frame-
works facilitated the implementation of a quite complex
Web application (the resulting code contains approximately
70 classes) by a very small team (only a student and her
advisor) in a small period of time (around 8 months).

4. Conclusions and Future Work

The utilization of the Peony environment allows devel-
opers to better know, learn, and use software patterns in the
creation of their applications, making it possible not only
to use the patterns, but also having guidelines of how to
validate them during VV&T activities. As future work we

intend to populate Peony with as many patterns as possi-
ble, especially Web application patterns, to help novice pro-
grammers on the implementation of Web applications. Pe-
ony is available on the Web, so any users who can test Peony
and use it and give us feedback are welcome. The frequent
usage of Peony will allow us to collect data about pattern
utilization during the different stages of software develop-
ment. Another future work will be the inclusion of other
test criteria, feed Peony with other different development
processes (at present it supports Connalen and the Unified
Process), reinforce users to feed it with patterns and submit
it to real usage in an industrial environment.

References

[1] G. Bertollo, B. M. Segrini, and R. A. Falbo. Evolving the
Definition of Software Processes in ODE. In SBES’06 -
Tools Session, pages 109–114, Florianpolis/SC - Brasil, Oc-
tober 2006.

360

Figure 2. Peony Conceptual Model.

[2] D. Bonura, R. Culmone, and E. Merelli. Patterns for Web
Applications. In SEKE ’02 - Proceedings of the 14th inter-
national conference on Software engineering and knowledge
engineering, pages 739–746, New York/NY - USA, 2002.
ACM Press.

[3] M. I. Cagnin, R. T. V. Braga, F. Germano, A. Chan, and
J. C. Maldonado. Extending Patterns with Testing Imple-
mentation. In SugarLoafPlop’2005, V Conferncia Latino-
Americana em Linguagens de Padres para Programao,
Campos do Jordo/SP - Brasil, Agosto 2005.

[4] A. Chan. Peony: a web environment to support devel-
opment processes using software patterns and test require-
ments during applications’ design (in Portuguese). Mas-
ter’s thesis, ICMC-University of Sao Paulo, Sao Carlos/SP -
Brasil, February 2008.

[5] J. Conallen. Buildind Web Applications with UML. Addison-
Wesley, 2nd. edition, 2002.

[6] J. Danculovic, G. Rossi, D. Schwabe, and L. Miaton.
Patterns for Personalized Web Applications. In Euro-
PLoP’2001 - Proceedings of the 6th. European Conference
on Pattern Languages of Programs, Irsee - Germany, July
2001.

[7] R. A. Falbo, F. B. Ruy, J. Pezzin, and R. D. Moro. Ontolo-
gies and Semantic Software Development Environments (in
Portugues). In JIISIC’04 - IV Jornadas Iberoamericanas de
Ingeniera del Software e Ingeniera del Conocimiento, Madri
- Espanha, November 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable of Object-Oriented Soft-
ware. Addison-Wesley, 2th. edition, 1995.

[9] F. Garzotto, P. Paolini, D. Bolchini, and S. Valenti.
“Modeling-by-Patterns” of Web Applications. In ER ’99,
Proceedings of the Workshops on Evolution and Change in
Data Management, Reverse Engineering in Information Sys-
tems, and the World Wide Web and Conceptual Modeling,
pages 293–306, London, UK, November 1999. Springer-
Verlag.

[10] F. Garzotto, P. Paolini, and D. Schwabe. HDM - a model-
based approach to hypertext application design. ACM Trans-
actions on Information Systems, 11(1):1–26, January 1993.

[11] M. Hakala, J. Hautamki, K. Koskimies, J. Paakki, A. Vilja-
maa, and J. Viljamaa. Architecture-Oriented Programming
Using FRED. In ICSE ’01: Proc. 23rd International Con-
ference on Software Engineering, pages 823–824, Washing-
ton/DC - USA, May 2001. IEEE Computer Society.

[12] T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM:
A methodology for structured hypermedia design. Commu-
nications of the ACM, 18(8):34–44, August 1995.

[13] N. Koch and G. Rossi. Patterns for Adaptive Web Applica-
tions. In EuroPLoP’2002 - Proceedings of the 7th. European
Conference on Pattern Languages of Programs, Irsee - Ger-
many, July 2002.

[14] P. Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley, 2th. edition, 2000. 298 p.

[15] A. Lima, A. Costa, B. Frana, C. A. L. Reis, and R. Q. Reis.
Flexible Management of Software Processes with the We-
bAPSEE Environment (in Portuguese). In SBES’06 - SBES -
Tools Sessions, pages 97–102, Florianpolis/SC - Brasil, Oc-
tober 2006.

[16] F. Marinho, M. Santos, R. N. Pinto, and R. Andrade. Pro-
posal of a Pattern Repository integrated to RUP (in Por-
tuguese). In SugarLoafPlop Proceeding 2003, The Third
Latin American Conference on Pattern Languages of Pro-
gramming, pages 277–290, Porto de Galinhas/PE - Brasil,
August 2003.

[17] Potix Corporation. ZK - Simply Ajax And Mobile. Online,
2007.

[18] R. S. Pressman. Software Engineering: a Practioner’s ap-
proach. McGraw-Hill, 6th. edition, 2005.

[19] Red Hat Middleware, LLC. Hibernate Reference Documen-
tation - Version: 3.2.2. Online, 2007.

[20] D. Rosenberg and K. Scott. Use case driven object modeling
with UML: a practical approach. Addison-Wesley Longman
Publishing Co., Inc., Boston/MA - USA, 1999.

[21] Sun Microsystems, Inc. JavaBeans TM. Online, August
1997.

361

