
MVC-Webflow: an AJAX Tool for Online Modeling
of MVC-2 Web Applications

Marco Brambilla, Alessandro Origgi
Politecnico di Milano, Dip. Elettronica e Informazione, P.za L. Da Vinci 32, 20133 Milano, Italy

marco.brambilla@polimi.it, alessandro.origgi@mail.polimi.it

Abstract

Modern Web applications are characterized by a

high level of complexity and deal with huge amounts of
data. When the application grows in complexity,
manual code development is not suitable, because it
lacks in efficiency, reuse, reliability, maintainability,
and group work facilities. On the other hand, several
Web engineering approaches are too far away from the
average developer and designer way of working to be
widely adopted. In this demonstration paper we
propose a light-weight design notation (with its
companion editing tool) that leads to the development
of MVC applications. We present an on-line visual
editing tool called MVC-Webflow for the specification
of simple conceptual models for MVC applications and
we provide partial automatic code generation, that can
be performed on the flight directly on the deployed
application. The advantages of the approach are the
closeness to the well known MVC paradigm, the
foundation on solid web engineering models.

1. Introduction

Web Engineering has proven a valid approach to
the design and implementation of Web applications. A
lot of approaches and notations exist to increase
efficiency, reuse, reliability, and maintainability.
Unfortunately, these approaches are not as widely
adopted as one could expect. One of the reasons is that
they are often too far away from the average developer
and designer way of working. This becomes more and
more evident in application development where time to
market and continuous update are crucial. Indeed, in
these scenarios CMS systems and pre-designed
solutions are often preferred. Their main advantage is
that most of the updates can be applied directly at
runtime, simply by updating the data or the metadata
that describe the application content and structure.
Unfortunately, this cuts off any design abstractions in
the development process, with several disadvantages in

terms of overall design quality and cleanness of the
application structure.

Some intermediate solutions have been proposed,
that try to provide some design help while developing
the application (e.g., see App2You, where data model
and business logic are built at runtime while the
designer adds contents and pages to the application
[http://app2you.com]), but they still lack a modeling
phase of the application.

With this project we want to offer a simple
conceptual model which allows developers to manage
the application structure exploiting the MVC
architecture. To ease the task, we offer an online tool
called MVC-Webflow for drawing the data and
application structure and turning the specification to a
running application on the fly. Using the tool the
developer is able to define the flow of the application,
the view composed by the JSP pages and the controller
which process the user requests and acts as
intermediary between the business logic and the view.
The tool is implemented on the AJAX platform, for
granting maximum usability and interface quality.

The paper is organized as follows: Section 2
clarifies the purpose of the work; Section 3 describes
notation and structure of the modeling language that
we adopt in the tool; Section 4 describes the MVC-
Webflow editing tool and a small application example;
Section 5 discusses the related works and concludes.

2. Aims and benefits

The main purpose of the MVC-Webflow tool is to
lower the barrier to the adoption of Web Engineering
techniques in the development practices. This aim is
addressed by the following basic choices:

 We allow to model applications with a MVC
approach adapted for the Web (namely, the Model 2
design framework), which is widely adopted by
developers and has some valid implementation
counterparts (e.g., Jakarta Struts);

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.37

344

 We offer an online design tool that provides both
solid model-driven design features typical of Web
Engineering and quick application evolution thanks
to a Web based interface that does not require a rigid
development process;

 We provide basic on the fly code generation on
Model 2 reference architectures (at the moment, we
provide code generation for Struts), with special
attention to the specification of the Controller.

The advantages of MVC architectures are well

known. They allow the developer to design the Web
application defining three separate levels: Model, View
and Controller. In complex applications, separation of
concerns is fundamental; MVC allows it by separating
data and business object (the Model), user interface
aspects (the View), and the rules that control the
execution logics of the application (the Controller).
MVC decouples business logics and data access from
the presentation thanks to the Controller intermediate
component. For the Web, a special version of MVC
called Model 2 (also called MVC-2) has been studied.

In our proposal, we offer automatic code generation
on the Jakarta Struts platform, a well known
implementation of the Model 2 paradigm. From an
implementation point of view, the configuration of the
Jakarta Struts controller is specified in the file struts-
config.xml, that specifies the logics for invoking the
action classes, the model objects playing as interfaces
toward the data sources and the business logic.

We provide a visual model for easily describing the
controller behaviour and the used action classes. The
visual model can be specified through an online tool
implemented on AJAX technologies, that allows to
design the diagrams, to store them on a server, to
retrieve them and to generate the basic pieces of the
Struts components. We automatically generate the
contents of the struts-config.xml file and the stubs of
the action classes from the diagram created using the
model. The advantages of the approach are:

1. simple and quick design of the application model;
2. good overall vision of the application, with a

notation directly referring to the MVC models;
3. independent design of the controller flow and of

the called action;
4. easy reuse of parts of the application defined in

the diagram.

3. MVC-Webflow Definition

The MVC-Webflow metamodel is defined by a set
of primitives and by the rules for specifying the

connections among those primitives. The diagram
resulting from the design phase represents the
conceptual schema of the MVC application, that
mainly consists of JSP pages (view components),
actions (model components), and connections
(controller definitions). The primitives of the model are
represented in Table 1, together with their main
properties, and are briefly described in the following:

 Action units specify the way in which the application
reacts to the user input: the correct Action unit is
called based on the controller decision, and then it
processes the user requests, by retrieving data and/or
calling the business logic, and provides the
information for building the response to the user.
The Action unit behaviour must be defined
completely by the developer. An Action unit can be
linked to a JSP page that shows its results or can be
connected to another Action unit for performing
further processing (possibly based on the results of
the first unit).

Table 1. Primitives of the MVC-Webflow models

Symbol Concept Properties

Action Unit

Name (the name of the Form
Bean defined in the Formset);
Path (to call a specific Action
Mapping); Type (path of the
Action Class); Scope
(persistence of the Form Bean);
Validate (to use the validation);
Execute method (the logic
between the Controller and
Business Services).

Jsp Page
Name; FormBean usage (to
generate the corresponding Form
attached to the Action unit)

Jsp
Fragment Name.

Form

FormBean Name; FormBean
Type (the qualified name of the
Form Bean Class); Form
Properties (array of all the
properties of the Form Bean);
Plug-in Class name;
ValidationXML (validation rules).

Connection

Link Name.

Success

Link Name.

Failure
Link Name.

Containment
Link Name.

 JSP pages represent the View of the model. Each
JSP page corresponds to a page in the final Web
application and allows to present contents to the
user. The JSP page must be defined by the developer

345

using any sort of editing tool. JSP pages interact with
Action units through Links. The JSP page receives
the content to be shown in the page. The JSP page
can call Action units and send it some parameters.

 Form units must be connected to an Action unit and
represent the user input from one or more form
fields. In this way, Action units can receive the user
input coming from the pages of the view.

 JSP fragments are portions of reusable code that can
be embedded in JSP pages. The main advantage of
this primitive is to provide modularization and
reusability to the designer. Notice that JSP fragments
cannot have input links.

 Connection Links allow the developer to define the
control flow of the application. A control flow is a
directed arc represented with an arrow from the
source to the destination. It can connect: (i) a JSP
page to an Action unit or to another JSP page; (ii) an
Action unit to a JSP page or to another Action unit.
A link can carry content objects and parameters.
Two variants of the connection links are used for
specifying the outcome of a control unit: Success
Links are shown with a green arrow; Failure Links
are shown as red arrows. After its execution, the
Action unit will follow the success path or the failure
path depending on a Boolean result. A more refined
design approach could consider more complex exit
conditions, and add several corresponding outgoing
links.

 Containment Links are used to include Form units
into Action units and JSP fragments into JSP pages.
This type of link establishes a relation of
containment between the two units. For example a
JSP page can contain more than one JSP fragment
unit and this one can be used by more Action units.

3.1 MVC-Webflow Metamodel

In this section we briefly outline the MVC-
Webflow Metamodel. The class diagram in Figure 1
represents the object oriented description of the
metamodel. The main model element is Project, which
represents the whole Web application. The project is
composed by the Data model and the Web model. For
lack of space, we concentrate only on the Web model,
since the Data model can be specified using a standard
representation (E-R, class diagram, ontology model,
and so on). A Web model is composed of Web
elements, which can be links, JSP pages and
fragments, action units and form units. The properties
that can be specified for each element are summarized
in Table 1. From an MVC standpoint, we can classify

Form units, JSP pages, and JSP fragments as view
elements; Action units as model elements; and links as
elements that define the controller behaviour.

Figure 1. MVC-Webflow Metamodel

4. The MVC-WebFlow Online Editor

To ease the specification of MVC-WebFlow

models, an online editing tool has been developed. A
prototype version of the tool is available online at [7].
The architecture of the editor is based on RIA
technologies. A Rich Internet Application (RIA) is an
Internet application that attempts to bridge the usability
gap between desktop applications and traditional Web
sites. At this purpose, it exploits the graphical and
execution capabilities of the clients (namely, the
browsers), by adding scripts into the pages, thus
providing higher quality of interactivity and an user
experience. RIAs can be enabled through several
technologies, such as Java, Javascript, ActiveX, Adobe
Flash, Flex, and others.

The most known platform for RIAs is the AJAX
framework, that we adopted for our implementation. In
particular, we based the GUI of the tool on the
opensource Openjacob Draw2D library and other
AJAX technologies: HTML, Javascript, XML objects,
W3C DOM, Yahoo! User Interface library (UI),
XMLHttpRequest method, Server-side scripting (Java
server pages), and MySQL database.

346

Legenda:

 = client / server border
 = application
 = component
 = execution flow

Figure 2. Architecture of MVC-Webflow Editor

Figure 2 shows the general architecture of the

MVC-Webflow editor. At client side, HTML provides
the frame of the editor Web page. The graphic
interface is entirely implemented at client side with
Javascript.

The modelling canvas is implemented by the
Openjacob Draw2D library, which in turns exploits

JavaScript and DOM. To support the interaction with
the user and to build the editor panels and windows we
have used the Yahoo! User Interface library, a set of
utilities and controls written in JavaScript for building
richly interactive Web applications using techniques
such as DOM scripting, DHTML and AJAX. User
interactions at the interface level trigger events (1) that
in turn activate the interaction with the backend
components (2) at the server side. The communication
is implemented through AJAX XMLHttpRequest
method, which allows sending HTTP requests and
getting responses asynchronously with respect to the
page refresh in the browser. XMLHttpRequest (3,5)
works just as if the browser were making normal
requests to the server, but without the need of page
refresh, thus allowing to update only small pieces of
the page if needed. The resulting application is much
more responsive and user friendly, as users spend
significantly less time waiting for requests to process.
The requests are collected and processed by Java
Server Pages at the server-side.

The editor allows the user to login, edit and save
his projects on the server, and to reload them in the
future. The server-side storage is implemented in a
MySQL database. When the user want to load the
project the editor makes a parsing of the XML string
and generates all the figure objects and connections of
the diagram. In the following figure you can see the

overall architecture of the system. The tool also
features partial code generation of the elements needed
by a Struts MVC application.

4.1 Tool Interface and Sample Application

To show the approach at work, Figure 3 presents a
very simple piece of Web application specified with
MVC-Webflow and edited within the MVC-Webflow
online editor. The example diagram shows a piece of
Web application that receives the credit card
information from the user and validates the card. It
includes a creditCardCheck JSP page, that leads to a
checkCard action (that includes the creditCard form).
The successful outocome of the checking leads to the
confirmed JSP page, while a failure leads to the
notConfirmed JSP page.

The editor interface allows the designer to edit,
save and retrieve projects in the Web browser. The
properties of the model elements can be specified
within the property panel on the right (and a popup in
the middle).

Figure 3. Example of MVC-Webflow diagram

The properties of the components are saved in the
XML string describing the project and are used for the
generation of the controller configuration file of
Jakarta Struts. Notice that the business logic behind
each application action is not managed by the tool and
must be implemented by the developer.

Figure 4 shows two examples of filled-in property
panels respectively for the form element and for the
action element of the sample application. The
properties to be set are the ones listed in Table 1.

347

Figure 4. Property panels for the creditCard Form
and for the checkCard Action.

Figure 5. Form properties Panel showing the
definition of the form fields.

Figure 6. Execute method panel showing the
Java code for the checkCard Action.

Figure 5 and Figure 6 show additional details about
the elements described above. Figure 5 shows the panel
for specifying the list of fields of a form: in particular,

the fields of the creditCardForm are shown. Figure 6
shows the Execute method panel, where the developer
can write the Java code for the execute method of the
action.

4.2 Code generation
As already mentioned, the tool includes some basic
code generation features. In particular, the tool
currently produces the following components of the
Struts MVC framework:

 Web.xml, describing the deployed application;
 Struts-config.xml, specifying the behaviour of the
controller;

 Validation.xml, describing the validation rules
for the user input ;

 JSP pages, implementing a sketch of the JSP
pages, including the basic elements that can be
inferred from the MVC-Webflows diagrams;

 Action classes, implementing the standard Action
structure, filled in with the details provided by
the user (e.g., in the Execute method panel).

Figure 7 shows the automatically generated Struts-
config.xml configuration file for the credit card
application. The generated code infers information
from the flow diagram representation and from the
objects properties. The result includes the form
structure, the action-mappings elements which define
the real flow of the application (derived from the
checkCard Action), and the inclusion of the Struts
validation plugin, as specified in the property panel.

<struts-config>
 <form-beans>
 <form-bean name="creditCardForm"
 type="org.apache.struts.validator.DynaValidatorForm">
 <form-property name="number"

 type="java.lang.String"/>
 <form-property name="owner"
 type="java.lang.String"/>
 <form-property name="validFrom"
 type="java.lang.String"/>

 <form-property name="validUntil"
 type="java.lang.String"/>

 </form-bean>
 </form-beans>
 <action-mappings>
 <action path="/checkCard"
 type="package.CheckCreditCardAction"
 name="creditCardForm" scope="request">
 <forward name="success" path="/confirmed.jsp" />
 <forward name="failure" path="/notConfirmed.jsp"/>
 </action>
 </action-mappings>
 <plug-in
 className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property property="pathnames" value="/WEB-INF/
 validator-rules.xml,/WEB-INF/validation.xml"/>
 </plug-in>
</struts-config>

Figure 7. Generated struts-config.xml file.

348

5. Related Work

Several tools have been developed for engineering
Web applications: among them, we can cite
VisualWADE [5], WebRatio [1][8], WSDM editor [2],
ArgoUWE [6], and Hera Presentation Generator (HPG)
[3], and AWAC[4]. All of them are CASE tool that
help formalize and automate the production of Web
applications, with different focuses and flavours.
However, they are often very formal and quite far
away from the common practice of Web developers.
Our solution adopts a rather opposite position with
respect to other approaches, in that it attempts to
maximise the simplification of the whole Web
application modeling and subsequent implementation.
To achieve this objective, some simplifications in the
resulting Web application have been introduced: we
assume that no AJAX interactions are included in the
pages, and that the application structure consists of a
basic set of page navigations and server side
computations mainly defining of a sequence of input,
management, and output of data.

5. Conclusions and Future Work

In this work we presented a simple conceptual
model for MVC-based Web applications, and a
prototype online tool for editing and automatically
generating the description of the Controller, which is
often the most complex part of the applications. Being
online, the editor allows quick (re)design and
(re)deploy of the application, with a set of primitives
based on MVC, that is very familiar to the Web
developer.

Future work will include refinement and
enrichment of the model, together with additional
implementation effort to make the online tool suitable
to public usage.

A first improvement of the model will consider
more complex Action outcomes and add several
outgoing links corresponding to the outcomes.
Additional design facilities will be introduced for the
management of complexity of big projects (i.e.,
facilitating reuse, depuration, team work, and so on).

Further activities can be envisioned in order to
make the tool accessible not only to designer but even
to end user, thus allowing them to directly design their
own application online. However, a long way is still to
be covered in this sense, since end user require a set of
clearly understandable and predefined components to
be used, without the need of writing code or bothering
about the architecture components.

6. References

[1] R. Acerbis, A. Bongio, M. Brambilla, S. Butti,
“WebRatio 5: An Eclipse-Based CASE Tool for Engineering
Web Applications", ICWE 2007, Springer LNCS 4607, pp.
501-505.
[2] S. Casteleyn, “Designer Specified Self Re-organizing
Websites”, Phd thesis, Vrije Universiteit Brussel, 2005.
[3] F. Franciscar, G.J. Houben, P. Barna “HPG: The Hera
Presentation Generator”. Journal of Web Engineering, Rinton
Press, Vol. 5, No. 2, p. 175-200, 2006.
[4] I. Garrigós, C.Cruz and J.Gómez, “A Prototype Tool for
the Automatic Generation of Adaptive Websites”, AEWSE07
workshop, ICWE 2007, Como, Italy.
[5] J. Gómez, A. Bia, A. Parraga, “Tool Support for Model-
Driven Development of Web Applications”, AEWSE07
workshop, ICWE 2007, Como, Italy.
[6] A. Knapp, N. Koch, F. Moser, G. Zhang, “ArgoUWE: A
CASE Tool for Web Applications”. EMSISE03,
http://www.pst.informatik.unimuenchen.de/~kochn
[7] MVC-WebFlow online model editor prototype.
http://dbgroup.como.polimi.it:8080/MVCWebFlow/
[8] WebRatio Web Site. http://www.webratio.com.

349

