
 

Exploiting Structure Recurrence in XML Processing 
 
 

Dong Zhou 
DoCoMo USA Labs 

zhou@docomolabs-usa.com

ABSTRACT
Transmitting, parsing, and transforming XML 
documents (and messages) are particularly costly in 
cellular environments because of the limitations in 
handset and access network capabilities. A big part of 
XML processing cost is caused by the processing of 
the structure of the documents. By structure we refer to 
the entity resulted from an XML document after 
removing the text nodes and attribute values of the 
document. While XML is a flexible, extensible 
language, real-world data exchanged in XML often 
exhibit some degree of stability in its organization. In 
other words, a computer receiving an XML data item 
of certain structure is likely to encounter the same 
structure among future data items. Since most 
structure-related processing is identical for data items 
with identical structure, it is thus evident that the 
overall performance of XML processing will improve if 
redundancy in structure related processing can be 
reduced. In this paper we present the concept of 
Structure Encoding and the approaches to quickly 
identifying recurring structures, including one relying 
on collision-resistant hash function. The paper then 
describes in detail techniques to improving the 
performance of XML transmission, tokenization, 
parsing, and transformation by using Structure 
Encoding. Evaluation experiments with our prototype 
implementation and industry benchmark suite 
demonstrate huge performance improvement potential 
in the presence of structure recurrence: up to 7 times 
faster for DOM-style parsing, up to 38 times faster for 
transformation, and up to 97.4% in size reduction 
when 20% of the text and attribute values change. In 
the worst case when there is no structure recurrence, 
structure encoding causes an overhead of about 11.1% 
for DOM-style parsing and about 8.9% for 
transformation. 

1. INTRODUCTION
XML and Web Services are becoming important 
constituents of computing, and are starting to be 
adopted by the cellular world. This trend is manifested 
by Open Mobile Alliance’s bracing of XML in its 

specifications, and by Nokia’s recent adoption of a 
service-oriented Web Services (which is based on 
XML) framework for mobile phones [1]. XML data 
processing (including, but not limited to, transmission, 
parsing and transformation), however, is costly 
compared to native data processing, especially on 
mobile handsets. Because of the gaps in  processor 
frequency, memory bandwidth and access latency, and 
software maturity (such as the existence/maturity of 
the Java JIT compiler), today’s smartphones are 1 to 
several orders of magnitude slower than desktop 
computers for processing intensive applications. This, 
combined with lower bandwidth and frequent 
interference in mobile access networks, translates to 
longer latencies and more energy consumption for 
XML processing on mobile handsets. It is thus of 
particular importance to provide efficient middleware 
for XML processing in cellular environments. 

While XML is a flexible, extensible language, real-
world data exchanged in XML often exhibit some 
degree of stability in its organization. In other words, a 
computer receiving an XML data item of certain 
format is likely to encounter the same format among 
future data items. For example, SOAP requests 
received by a weather forecast Web Service might 
have the same form, and so might the responses that it 
sends back. As another example, financial data and 
sports scores broadcasted to mobile devices are often 
in unvarying organization. Similar are the protocol 
messages used for mobile device management and 
mobile data synchronization [22], the data passed 
around with XML-RPC [21], RSS feeds from a Web 
site [23], and the results from Web Continuous Query 
systems [11]. In each of these examples, although the 
way a messages or data is organized is not fixed, it is 
usually quite stable. In other words, the structure of 
XML-described data changes much less frequently 
than the real content of the data. 

By structure we refer to an entity constructed from an 
XML document by removing the text nodes and 
attribute values of the document (see section 3 for a 
precise definition). The structure of a document is 
much more stable than the document itself: other XML 

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.46

311



constructs, such as processing instructions and element 
names and namespaces, changes much less frequently 
than text node values, and attribute names are nearly 
constant compared to changing attribute values. 

The cost of structure-related processing, however, is a 
big part of the overall XML processing cost. Structure 
needs to be transmitted along with the rest of the 
document. Syntax checking for markups is as costly 
as, if not more so than, syntax checking for text nodes. 
So is validation. Well-formedness checking and tree 
building are almost exclusively for structure 
constructs. Finally, in stylesheet transformation, many 
expensive operations, such as node selection and 
template rule matching, are usually operated on 
structure information alone. Furthermore, such 
structure-related processing is usually identical for 
documents with identical structure. It is thus evident 
that the overall performance of XML processing will 
improve if redundancy in structure related processing 
can be reduced.

In this paper we present the concept of Structure 
Encoding. We describe approaches to quickly 
identifying recurring structures, including one that 
treats document structure as a string, and uses message 
digest generated by collision-resistant hash function as 
ID of the structure. Structure Encoding explores 
various techniques to improve the performance of 
XML tokenization, parsing, transformation, and 
transmission, by exploiting the recurrence of document 
structure.

We have implemented prototypes of Structure 
Encoding based XML parser and transformer, by 
extending the kXML parser [9] and the XT XSLT 
processor [12], respectively. Evaluation experiments 
demonstrate that Structure Encoding offers a median 
potential speedup of over 4.34 (up to 8 in best cases) 
for parsing, and a median potential speedup of 5.38 
(up to over 39 in best cases) for transformation. In 
adversary cases, when there is no structure recurrence, 
the median overhead is about 11.1% for parsing, and 
about 8.9% for transformation even after the cost of ID 
generation through hashing has been taken into 
account. 

Structure Encoding is particularly well-suited for 
mobile environments where a proxy (such as a WAP 
gateway) mediates between a mobile device and the 
servers on the Internet. The close-coupling between a 
mobile device and its service gateway allows efficient 
Structure Encoding based XML transmission over 
wireless access network, without violating standard 
conformance and the loose-coupling between the 
mobile device and the servers on the Internet. With 

Structure Encoding, our experiments demonstrated up 
to 97.4% in size reduction when 20% of the text and 
attribute values change. Such high efficiency in 
transmission also further improves the efficiency in 
parsing and transformation, as it reduces the time 
required for tokenization. 

In the rest of this paper, section 2 discusses related 
work. Section 3 presents Structure Encoding in detail. 
In section 4, we describe our current implementation, 
and in section 5 we describe evaluation experiments 
and analyze experiment results. We conclude the paper 
with brief deliberation on limitations of Structure 
Encoding and our future work in this area. 

2. RELATED WORK 
Related work in XML processing optimization can be 
roughly categorized into the following: 

API specialization, where different application 
programming interfaces (APIs) are proposed to meet 
the needs of different applications. For example, the 
Push API (such as SAX [2]) is usually used when there 
is no need to create a document tree; the Pull API 
(such as XML PULL [3]) is a refinement over Push 
API so that the application, rather than the parser, 
takes control; and the Tree-base API (such as DOM 
[4]) is used when the application needs to navigate the 
document. Another direction in this area is API 
simplification, where complex functionalities are 
intentionally left out, so that the system requires less 
resource and executes more efficiently. For example, 
kXML provides a tree-based document access without 
fully implementing the DOM specification, so that it 
can fit into devices with little memory [9]. The concept 
of Structure Encoding is independent of any specific 
API. Existing and new APIs can be ported to be 
Structure Encoding based. However, potential gains 
from utilizing Structure Encoding are different for 
different APIs. For example, a DOM-style API will 
benefit more than a SAX parser as the former does 
more structure-related processing. 

Data structure optimization, where the effort is on 
the efficiency of the internal and external 
representation of XML documents. For example, 
binary XML (such as WBXML [5]) uses more 
efficient representation to reduce storage and 
transmission size of XML documents; esXML uses 
flexible internal representation to reduce document 
update costs [6]; and VTD-XML uses special data 
structure to avoid extracting data from XML 
documents [7]. Work in this area can generally be 
adopted in Structure Encoding implementation to 
achieve greater combined performance improvement. 

312



Pre-processing, where some steps of XML processing 
is conducted ahead of the time, so that the amount of 
processing needed after document arrival is reduced. 
XSLTC is such an example. It offline compiles an 
XML stylesheet into executable code used for directly 
transforming source document. Structure Encoding 
based XSLT transformation goes a step further in pre-
processing: it pre-processes the combination of a 
stylesheet and a document structure, instead of only a 
stylesheet, thus further reduces the amount of online 
processing. 

Structure-related optimization, where the structure 
of an XML document and the real content of the 
document are treated with different optimization 
approaches. Work in this area is closely related to 
Structure Encoding. The only work we are aware of in 
this area is XMill, which compresses document 
structure separately from the rest of the document. 
Structure Encoding is broader in structure-related 
optimization in that it targets not only compression but 
also other processing, including parsing and 
transformation. For compression, Structure Encoding 
focuses on inter-document optimization, while XMill 
mostly focuses on intra-document optimization. There 
is also work on using parsers dedicated to specific 
schemas to improve XML parsing performance 
[27][28]. The approach, however, is not applicable to 
aspects of XML processing other than parsing.  
Structure is also used in the context of lazy XML 
parsing to defer actual parsing until demanded 
[29][30]. 

Processing result caching, where previous processing 
results are cached and can be used to expedite later 
processing. An example is Deltarser, which uses a 
state-machine based approach to cache parse events 
resulted from state transitions, and reuses such parse 
events for matching byte sequences. Our work also 
falls into this category. Specifically, we cache 
structure-related processing results. Compared with 
Deltarser, Structure Encoding is more aggressive in 
reusing processing results, as we extend result reusing 
to tree-building and XSLT transformation.

Hardware acceleration, where either redundant 
hardware is used to parallelize or pipeline XML 
processing steps [13][14], or dedicated hardware is 
used to speedup bottleneck operations such as XPath 
evaluation [15]. Hardware acceleration typically either 
focuses on processing throughput or requires complex 
special hardware.  In contrast, Structure Encoding 
focuses on processing latency and doesn’t require 
special hardware support. 

Delta-encoding, which is a technique used for 
optimizing network transmission by only transmitting 
the difference between a file and one of its preceding 
files [25][26]. Structure Encoding, when used for 
transmission, can be considered as a special form of 
delta-encoding. However, Structure Encoding is not 
limited to transmission: it extends the concept of 
“delta-transmission”: into “delta-processing”, i.e., it 
optimizes XML processing by, attempting to, only 
transmitting, parsing, and transforming the difference 
between a file and one of its preceding files. 

In native data processing area, PBIO is an efficient 
wire format for high performance data exchange in 
heterogeneous environments [18]. It uses format server 
to dynamically register data formats, and it 
dynamically generates data unmarshalling code for a 
data format to speed up the exchange of data of that 
format [19]. While PBIO is used for the exchange of 
in-memory data structure, Structure Encoding is for 
the exchange of text-form XML documents which 
require optimizations in syntax checking and well-
formedness checking. Structure Encoding also offers 
optimization techniques for document tree-building 
and transformation which are not addressed in PBIO. 
While PBIO and Structure Encoding both reduces the 
costs for the transmission of data formats/structures, 
Structure Encoding also eliminates the transmission of 
recurrent data field values. 

3. STRUCTURE ENCODING 
In this section, we first give our definition of document 
structure, and briefly describe approaches to 
identifying document structure. The rest of the section 
then discusses in detail techniques for improving XML 
processing performance by exploiting document 
structure recurrence. 

3.1 Document Structure 
In Structure Encoding, the structure of an XML 
document is derived from the serialized text of the 
document, after removing non-whitespace text nodes 
and after “canonicalizing” element tags. 
“Canonicalizing” element tags includes “whitespace 
canonicalization” and “attribute canonicalization”. 
“Whitespace canonicalization” removes any optional 
whitespaces in element start tags and end tags, and 
replaces any required whitespace with a single space 
character. “Attribute canonicalization” removes ‘=’ 
character, the attribute value, and any delimiters 
surrounding attribute value.  

Note that namespace declarations are not 
“canonicalized”, as we believe that namespace 
attribute values are much more stable than other 

313



attribute values. More importantly, having static 
namespace declarations enables the optimization of 
operations such as well-formedness check for element 
names. 

Figure 1 shows a simple XML document for a book 
record.  The corresponding structure of the document 
is shown in Figure 2. Figure 3 depicts one probable 
tree-style memory representation of the document 
structure. Note that in this figure, except for pointers to 
attribute values and text nodes, all other pointers have 
been assigned and each points to either another node 
or a character string. That is, two different book record 
documents will only differ in pointers to text nodes 
and attribute values. 

3.2 Identifying Recurring Structure 
Identify recurring structure requires approaches to 
quickly map a document structure to an identifier (ID). 
The mapping can be either based on explicit-naming or 
based on hashing: 

� Explicit-naming based approach: in this approach, the 
application that generated the document explicitly 
associates an ID to the document. The application is 
responsible in guaranteeing that documents with 

different structures are associated with different structure 
IDs.

� Hash based approach: in this approach, a collision-
resistant hash function (such as MD5 or SHA1) 
generates digest for a document structure, and uses the 
digest as the structure ID. 

The hash-based approach incurs processing overhead, 
but it makes it easier for making structure ID’s 
globally unique: although hash functions such as MD5 
are not collision-free, the possibility of collision is 
extremely low when digests are sufficiently long (e.g., 
128-bit), so digests generated by such functions are 
practically globally unique IDs. 

This mapping from structure to structure ID can be 
done by either the sender or receiver of the document: 

� Sender ID Assigning: in this approach, the sender (or 
any computer between the sender and the receiver) uses 
either explicit-naming or hashing to generate ID, and 
uses a special XML processing instruction to embed the 
ID into the XML document. Figure 4 shows an example. 

� Receiver ID Assigning: in this approach, the receiver 
uses hash based approach to generate IDs and identify 
recurring structures. Since hashing itself incurs 
processing overhead, this approach makes more sense 
when either hashing is very fast (e.g., there is a hardware 

Figure 1. An XML Document for Book Record

<?xml version="1.0" encoding="UTF-8"?>
<book>
   <title>Book on XML</title>
   <author>Foo</author>
   <price>49.99</price>
   <special>34.99</special>
   <size cover="Paperback">

974 pages; Dimensions(in inches): 2.08x9.00x7.26
   </size>
   <publisher>ABC Inc; 1st edition (Jan. 2002)</publisher>
   <isbn>1111111111</isbn>
</book>

<?xml version="1.0" encoding="UTF-8"?>
<book>
   <title></title>
   <author></author>
   <price></price>
   <special></special>
   <size cover>
   </size>
   <publisher></publisher>
   <isbn></isbn>
</book>

Figure 2. Structure of the Book Record

Figure 3. Visualizing Structure of the Book Record Document 

314



hash implementation), or costly further processing (such 
as tree-building or transformation) on the document is 
expected.

3.3 Exploiting Structure Recurrence 
Structure information can be exploited to speedup 
various XML processing stages: from tokenization, 
well-formedness check and validation, to tree building, 
transformation and transmission. In this subsection we 
describe in detail how Structure Encoding improves 
performance in each of these stages. 

3.3.1 Tokenization
Tokenization scans the source document, checks 
syntax, and generates tokens. Tokens have types as 
well as values. In Structure Encoding, token types 
include: Start Element, End Element, Immediate Close, 
Attribute Name, Attribute Value, Namespace Attribute 
Name, Namespace Attribute Value, Text, Whitespace, 
Comment, Doctype, and Processing Instruction. Note 
that an attribute is composed of two tokens, an 
Attribute Name token, and an Attribute Value token. 
Also notice that namespace attributes are treated 
differently from other attributes.  

Tokens values are in the form of strings. For example, 
the value of an Attribute Name token is the name of 
the attribute, while the value of an Attribute Value 
token is the value of the attribute. 

It is quite evident that two token lists generated from 
two documents of the same structure have tokens of 
exactly the same types, and they appear in the same 
order. Furthermore, other than tokens of types Text 
and Attribute Value, token values are also the same. 
This has two implications: one is that they occupy the 
same number of characters in the source document; the 
other is that if the token in the first document is 
syntactically correct, then the corresponding token in 
the second document must also be syntactically 
correct.

Structure Encoding exploits these facts. It caches token 
lists for document structures. When a new document 
comes in, it first acquires the structure ID of the 
document by either hashing or extracting the ID 
embedded in the document. It then uses the ID to 

retrieve cached token list for the document structure. 
Tokenization of the incoming document can be greatly 
improved in case of a cache-hit because: 

� The type of next token is known, so there is no need to 
identify token type of the next construct. 

� For most tokens, the tokenizer only needs to skip a 
known number of characters. For example, if next token 
is of type Doctype, then it only needs to skip a number 
of bytes based on the length of the value of the cached 
token.

� For most tokens, the tokenizer does not need to store 
values for them as it can share with the cached token. In 
above case, there is no need to create a string to store the 
Doctype construct. 

3.3.2 Well-formedness Check and Validation 
Well-formedness check in a typical XML parser 
verifies that: 

� There is exactly one top-level element. 

� All open tags have a corresponding close tag or an 
immediate close construct. 

� All tags are correctly nested. 

� Attributes of an element have different names. 

� Namespace attributes of an element have different 
names.

� All namespace prefixes have corresponding namespace 
attributes defined in scope. 

Note that none of these activities involve Text and 
Attribute Value tokens. As a result, if document D1 is 
well-formed, and document D2 has the same structure 
as D1, then D2 must also be well-formed. So there is 
no need for well-formedness check on D2. 

XML validation checks if a document conforms to the 
rules of a Document Type Definition (DTD) or a 
Schema. Continuing with above example, if D1 is 
valid for schema S, then D2 must also be valid for S if 
its Text and Attribute Value tokens are valid for S. 
That is, validation of D2 is reduced to the validation of 
its Text and Attribute Value constructs. 

3.3.3 Tree Building 
Tree-based parsers need to build a tree representation 
of the document. This tree building process involves 
operations such as the allocation (and later de-
allocation) of tree nodes, assign values to allocated 
nodes, and the linking of allocated nodes into a tree. 
Using structure information, once we know that the 
incoming document (D2) has identical structure as a 
previous document (D1), tree operations can be 
optimized in following ways: 

<?xml version="1.0" encoding="UTF-8"?>
<?se id=c5bae136d32e1d7763a1a970d186e0ff?>
<books>
…
</books>

Figure 4. Sample Document with Structure ID Embedded 

315



� Tree reuse: if D1 had previously constructed a tree and 
no longer needs it, then D2 can reuse it. All it needs to 
do is to reassign values for text and attribute nodes. 
Values for text nodes are extracted from corresponding 
Text Tokens, while the values of attribute nodes are 
extracted from corresponding Attribute Value tokens. 
Since, for a given value, the rank of its corresponding 
token in the token list is fixed, this reassignment process 
is extremely simple. This tree reuse approach obviates 
the operations for D1 to de-allocate (or garbage collect) 
the tree, the operations for D2 to allocate objects for each 
of its nodes and assign node values, as well as the 
operations for D2 to link these nodes. 

� Fast tree duplication: in case D1 still needs its document 
tree, a duplicate of D1’s document tree is first made for 
D2. Fast tree duplication is possible by either pre-
duplication when system is idle, or by re-organizing 
(also could occur when system is idle) D1’s document 
tree so that nodes of the tree are aligned in an array, and 
that tree duplication is reduced to one simple memory 
copy. 

� Tree sharing: by replacing pointers for text and attribute 
value pointers with corresponding offsets in token lists, 
D1 and D2 can share the document tree. This tree 
sharing approach is ideal for reducing memory 
requirements if system expects concurrent use of 
documents of identical structures (such as in a concurrent 
server environment). Figure 5 illustrates a simple 
implementation of two in-memory documents of a same 
structure sharing the in-memory representation of the 
structure. Each document contains a pointer to the 
structure, along with a list of texts and attributes values. 

3.3.4 Transformation
An XSL-based transformer generates output from a 
source document (D) with a stylesheet (SS). If the 

system has SS and the structure of D (ST) before D 
arrives, then this transformation can be split into two 
phases:

� The Pre-Processing (PreP) phase, which occurs before D 
arrives. It takes SS and ST as input, and generates Stencil
(SN, see below) as output. 

� The After Arrival Processing (AAP) phase, which occurs 
when D arrives. It uses SN and D’s token list as input, 
and generates the same output as would a usual XSLT 
processor for SS and D.

PreP is a partial transformation. It is a form of partial 
evaluation based on the partial document information 
contain in the structure of the document. Many costly 
XSLT operations, such as template matching and node 
selection, can be carried out in the PreP phase, so that 
they won’t be involved in the AAP phase, thus 
reducing the latency between the arrival of the 
document and the completion of the transformation. 

The result of the PreP phase is a Stencil which, 
assuming transformation result is in the form of text, is 
a list containing elements of the following types:  

� String, which is the result of fully executed XSLT 
operations. (Note that there are no adjacent strings in the 
list as they can be concatenated) 

� Future Expressions, which can only be fully evaluated 
after the document is received. Future Expressions can’t 
be resolved during the PreP phase as their values depend 
on the values of text nodes and/or attributes. Future 
Expressions are evaluated at the AAP phase, taking the 
token list of the incoming document as input.

� Branches, which contains a Conditional Expression, a 
True Stencil which is selected when the Conditional 

Figure 5. Documents of Identical Structure Sharing Document Tree 

316



Expression yields true, and a False Stencil which is 
selected when the Conditional Expression yields false. 

A sample Stencil is shown in Figure 6 and described in 
section 4.3. 

The AAP phase uses the token list of the document to 
resolve the Stencil, by resolving the elements in the 
Stencil in order. String elements are directly emitted to 
the output. Future Expressions are evaluated, the result 
of which then converted to String and sent to the 
output. For each Branch element, depending on the 
evaluation result of its Conditional Expression, either 
the True Stencil or the False Stencil is selected and 
recursively resolved.

Note that Future Expressions can only take document 
token list as input and doesn’t have access to XSLT 
variables. As a result, if an expression depends on an 
XSL variable whose value can’t be determined at PreP 
phase (because its value is conditionally updated by a 
conditional element), then there is no transformation 
optimization for this combination of stylesheet and 
structure.

3.3.5 Compression for Efficient Transmission 
Efficient transmission of XML documents is 
particularly important in mobile environments. 
Structure recurrence can be exploited for compression 
and efficient transmission, by avoiding the redundant 
transmission of structural information and by 
compressing recurring test nodes and attribute values: 

� Assuming sender S first sends document A to receiver R, 
and later sends to R document B which has the same 
structure as document A, if S knows that R has locally 
kept the structure information for A, then S only needs to 
send the structure identification of B, along with the text 

node and attribute values of 
B. Efficiency is achieved by 
replacing the structure of 
document B with the (much 
shorter) identification of the 
structure of the document. 

� Further, the text node and 
attribute values in document 
A has a 1-to-1 mapping with 
those in document B. If 
sender S is aware that 
receiver R also keeps text 
node and attribute values of 
document A, then when S 
detects that a value in B is the 
same as the corresponding 
value in A, S only needs to 
signal R to reuse the value in 
A, instead of retransmitting 
it.

The combination of the two 
offers potentially high compression ratio with very low 
computation overhead. 

Note that it is not necessary for the sender and the 
receiver to be both aware of the existence of the 
compression. For example, in wireless mobile 
environments, the gateway of a mobile device can 
serve as the proxy between the outside world and the 
mobile device: XML documents are transmitted in 
compressed form between a mobile device and its 
gateway, while the gateway and the outside world 
communicate in usual text form. 

4. IMPLEMENTATION
We have implemented in Java a XML tokenizer, a 
DOM-style parser, and a XSLT processor, based on 
Structure Encoding. The DOM-style parser is 
implemented as an extension to kXML, while the 
XSLT processor is implemented as an extension to 
XT.

4.1 Tokenizer 
The tokenizer operates in three different modes: 

� The Swift mode, which is activated when the incoming 
document contains sender assigned structure ID, and that 
cached token list for the structure is found. 

� The Hash mode, which is activated when the incoming 
document does not contain sender assigned structure ID. 
The hash function we use is an implementation of MD5 
which generates 128-bit digests. 

� The Nature mode, which is normal XML tokenization 
and is activated under all other conditions. 

Figure 6. An Example of Transformation Stencil

317



Under Swift mode, the tokenizer checks each token in 
the token list, and takes different action depending on 
the types of the token: 

� If it is a Text token, it reads a text string (delimited by 
‘<’ and may contain entity references) from the 
document character stream, and uses the text string to 
replace the value of the token. 

� If it is a Start Element token, the tokenizer first skips a 
number of characters from the document character 
stream. The exact number of characters is determined by 
the length of the name of the element. It then enters a 
loop that reads attributes of the element. Within the body 
of the loop, it first checks if the next token is Attribute 
Name. If it is not, then the processing for the Start 
Element token completes. Otherwise, it skips the name 
of the attributes, reads the value of the attribute and 
updates the value of the next token (which must be of 
type Attribute Value).  

� In all other cases, the tokenizer simply skips a number of 
characters. The exact number of characters is determined 
by the type of the token and the length of the value of the 
token.

In the Nature mode, the tokenizer reads in XML 
constructs, makes sure that they are syntactically 
correct, and then converts them into tokens. Operations 
in Hash mode are mostly the same, except that the 
tokenizer also needs to send structure characters to the 
hash function for ID generation. 

4.2 Structure Encoding Based Parser 
Figure 7 shows a structure encoding based XML 
parser. It has three components: The Tokenizer as 
described above;  

� The Structure Manager, which contains a cache manager 
that manages the reuse of document trees, and an 
optional Structure Optimizer, which does tree 
optimizations described in section 3.3.3. 

� The Controller, which includes an interface with the 
kXML DOM parser. It also includes a Value Loader 
which does text node and attribute value reassignments.

The Controller falls back to kXML DOM parser, by 
passing to it a SAX parser implemented on top of the 
tokenizer, when it is unable to get a reusable document 
tree from the Structure Manager. Each document 
structure has a mapping table that associates a text 
node or an attribute value object with a token in the 
token list. The Value Loader in the Controller uses this 
mapping table to quickly grab text or attribute values 
from incoming document’s token list, and reassigns 
them to corresponding text node or attribute value 
objects. Figure 8 illustrates using Structure Encoding 
based parser to parse the book record document shown 
in Figure 1.  

4.3 Structure Encoding Based 
Transformer
Figure 9 shows the components of a Structure 
Encoding based transformer hosted in the XT XSLT 
processor. Of its four components, the tokenizer and 
the Structure Manager are the same as in the parser. 
The two different components are the Pre-processor 
and the Transformation controller.  

Pre-processor carries out the PreP phase of structure 
encoding based transformation, using stylesheet and 
document structure to generate transformation Stencil. 
Within the document structure, the text and attribute 
nodes are changed to objects of a special type, which, 
upon access, throws a special exception which uses an 
integer index to indicate which text node or attribute is 
accessed. The structure is then treated as a regular 
document and fed to XT along with the stylesheet. We 
have also extended XT, so that any expression that 
may catch the above-mentioned special exception is 
extended into a Future Expression, which can be 
evaluated by taking only token list as input. A Future 
Expression in turn throws itself as a special exception, 
which is then either caught by another Future 
Expression or, eventually, by an action. An action 
generates a result segment, which can be one of the 
following:  

� A string, in the case when there is no special exception 
caught,

� A Future Expression, when one or more special 
exceptions are caught, and 

� A Branch, when the action is an IfAction generated from 
an xsl:if or xsl:choose XSL element.The Stencil 
Resolver in the Transformation Controller is called in the 
AAP phase after the source document arrives and a 
transformation is requested. It retrieves the Stencil using 
the stylesheet and the document structure as key, then 
uses the token list for the source document as input to 

Figure 7. A Structure Encoding Based XML Parser 

318



solve the Stencil, using methods described in section 
3.3.4.

Figure 10 shows a simple XSL stylesheet used to 
convert the book record document shown in Figure 1 
into HTML format. Note that it contains an xsl:if 
element, which tests if the “special” price is greater 
than zero, and if the condition is true, it outputs an on-
sale price. Figure 11 shows the result of the 

transformation. 

Figure 6 shows the Stencil generated by the PreP 
phase, where ‘[i]’ denotes the string value of the ith 
entry in the mapping table (see section 4.2). The “Root 
Stencil” contains a Branch, which has a “GreaterThan 
Number Relation” that can’t be pre-evaluated, as it 
depends on the number value of a Text or Attribute 
Value token. The True Stencil of the Branch is a 
simple Stencil, while its False Stencil is empty. 

4.4 Structure Encoding Based 
Compression
The implementation of Structure Encoding based 
compression for transmission is straight forward. The 
sender and receiver both maintain an encoding table. 
Each entry of the table is a mapping from a structure 
ID to a cached document structure as well as a list of 
template values for attributes and text nodes associated 

Figure 8. Example of Structure Encoding Based

Figure 9. Components of a Structure Encoding 
Based XSLT Processor

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="book">
  <html>

<head>
      <title><xsl:value-of select="title"/></title>
    </head>
    <body>
        <b><xsl:text>Author: </xsl:text></b><xsl:value-of select="author"/><br/>
        <b><xsl:text>Price: </xsl:text></b><xsl:value-of select="price"/>
        <xsl:if test="special > 0">
          <b><xsl:text> On Sale For: </xsl:text><xsl:value-of select="special"/></b>
        </xsl:if><br/>
        <b><xsl:text>Cover: </xsl:text></b><xsl:value-of select="size/@cover"/><br/>
       <b><xsl:text>Publisher: </xsl:text></b><xsl:value-of select="publisher"/><br/>
        <b><xsl:text>ISBN: </xsl:text></b><xsl:value-of select="isbn"/><br/>
        <br/>
    </body>
  </html>
</xsl:template>
</xsl:stylesheet>

Figure 10. Transforming the Book Record into 

Figure 11. Result HTML File from Sample 
Transformation

<htm l>
<head>
<title>Book on XML</title>
</head>
<body>
<b>Author: </b>Foo<br>
<b>Price: </b>49.99<b> On Sale For: 34.99</b>
<br>
<b>Cover: </b>Paperback<br>
<b>Publisher: </b>ABC Inc; 1st edition (Jan. 2002)<br>
<b>ISBN: </b>1111111111<br>
<br>
</body>
</htm l>

319



Table 2. Measurement Results (all numbers are in milliseconds) 
Tokenization Parsing Transformation 

100% Cache Hit 0% Cache Hit 100% Cache Hit 0% Cache Hit 
DocumentNature Swif

t Hash kDOM Sender
Assign

Receiver
Assign

Sender
Assign

Receiver
Assign

XT Sender
Assign

Receiver
Assign

Sender
Assign

Receiver
Assign

axis 7.1 4.8 9.5 11.4 5 9.6 10.7 13 36.3 6.9 11.4 36.3 39.3 
Back-
wards 33.3 7.4 43.4 60.7 7.6 43.7 56.1 66.6 232.2 12.9 49.5 232.7 252.4 

chart 18.5 7.7 24 32.1 7.8 24.9 30.1 36.3 117.8 21.9 39.7 118 129.3 
book 15.1 8.6 18.2 24.4 8.8 18.5 21.1 25.5 48.3 11.5 20.9 48.9 55.2 
game 33.1 7.2 43.2 60.7 7.6 43.5 56.4 67.3 92.2 8.9 45.1 92 105.5 
mid-
summer 1990 913.4 2311.

5 4686.9 997 2332.5 4012.8 4360.8 7398.5 1475 3068 7268.1 7555.2 

nitf-
stylized 67.3 25.1 76 105.3 27 77.3 93.8 107.7 178.3 34.4 85 188.5 204.3 

recipes 164.3 99 180.1 249.2 107.6 184.8 209.9 234.3 574.4 144.3 224.1 566 585.1 
sort 129.8 32.2 159.8 248.2 33 163.6 242.3 281.5 1094.9 55.6 188.1 1121.9 1174.4 
sp 36.2 21.5 40 53.7 23.2 40.6 45.5 51.3 122.8 28.2 45.2 126.6 138.9 
total 18.6 6.8 24.5 32.4 7.4 25 30.6 36.2 53.9 7.6 25.5 54 61.5 
trend 36.5 10.8 41 62.1 10.4 41.1 66.3 70.9 2249.3 56.9 89.1 2249.3 2279.5 
wai 9.1 4.5 12.5 14.2 4.6 12.6 13.4 17.1 96.4 7.7 15.8 99.9 105 

with the structure (Note that document structures and 
template values can be flushed out of the cache and 
reconstructed from files stored in persistent storage.). 

The first document of a given structure will be sent 
uncompressed. But an entry will be added to the 
encoding tables on both sender and receiver sides, with 
the attribute and text values of this first document used 
as template values. A following document of the given 
structure will be encoded as a two-byte integer 
indicating the index of the structure in the encoding 
table, followed by the list of attribute and text string 

values. A special 1-byte symbol replaces any value 
that is an exact match of its corresponding template 
value.  

Such compression is used between a mobile handset 
and its service gateway in cellular environments. Note 
that compression happens on a document send from 
the handset, through the gateway, to a server on the 
Internet, as well as on a document received by the 
handset through the gateway. 

Table 1. XML Documents Used in the Experiments, and Their Corresponding Stylesheets 

Document
Size 

(in KB) Stylesheet 
axis 0.38 Tests XPath selection along the different axes 

backwards 2.62 Reverses order of elements using the document used in game 

chart 1.29 Generates an HTML chart of some sales data 

book 1.21 Convertin book record to HTML 

game 2.62 Produces a HTML table of the data 

midsummer 146 Converting the play to HTML 

nitf-stylized 5.79 NITFML to HTML 

recipes 16.7 Converting Recipes in XML to HTML 

sort 10.3 Sorting input tree according to element name  

sp 3.53 Web site construction kit  

total 1.31 Reports on sales data 

trend 1.9 Computes trends in the input data. 

wai 0.58 Schematron validator for WAI docs 

320



5. EVALUATION
Evaluation experiments described in this section are 
conducted on a TI OMAP 1511 Innovator device, 
which runs in frequencies up to 200MHz. It has 32MB 
ROM as well as 32MB RAM. The OS used is a 
version of embedded Linux, and the JVM used is 
Intent from TAO Group. 

The source documents and stylesheets used for 
evaluation are randomly selected from Sarvega’s 
XSLTBench [16] and DataPower’s XSLTMark [17], 
after initially excluding some unrealistic 
transformations. We select these two benchmarks as 
they are influential industry benchmark and that they 
both support XSLT benchmarking. Note that some of 
the large source documents are less likely to have 
recurrent structures in real-world applications. We 
included them regardless as they might help us 
understand the implication of document size on system 
performance. Table 1 lists sizes of sample documents, 
and the transformation stylesheets used for them. Table 
2 lists the raw numbers used in following discussions. 
Documents are fully read into memory before any 
measurement starts to minimize external disturbance. 
Warm-up runs are always conducted prior to real 
measurement runs. 

5.1 Tokenization 
Figure 12 compares the speed of Swift mode and Hash 
mode against the speed of Nature mode tokenization. 
The Swift mode is by far the fasted, having a median 
speedup of 2.40 over Nature mode. The median speed 
of Hash mode is about 81% of that of Nature mode, 
which means a median hashing overhead of about 
23.5%. In the worst case, this overhead is about 37.4% 
(for wai).

5.2 DOM-style Parsing 
Figure 13 and Figure 14 compare speed of Structure 
Encoding based parsing against that of kXML parsing 
for both Receiver ID Assigning and Sender ID 
Assigning. In Receiver ID Assigning, the underlying 
tokenizer always uses Hash mode, while in Sender ID 
Assigning, the tokenizer uses Swift mode when cache 
hit ratio is 100% (i.e., structure of incoming document 
is always in cache), and uses Nature mode when cache 
hit ratio is 0%. 

Figure 13 shows the results for the ideal case when 
cache hit ratio is 100%: the median relative speed is 
4.34 when Sender ID Assigning is used, and is 1.35 
when Receiver ID Assigning is used. The best case is 
in backwords and game (which use the same source 
document), where the relative speed is close to 8 under 
Sender ID Assigning. 

Figure 14 shows the results for the worst case when 
cache hit ratio is 0%: the median relative speed is 1.07 
when Sender ID Assigning is used, and is 0.90 (or an 
overhead of %11.1) when Receiver ID Assigning is 
used. The worst sample is wai, where the overhead is 
about 20.5% under Receiver ID Assigning. The reason 

Figure 12. Comparing Performance of Tokenization Modes

Figure 14. Comparing Structure Encoding Based XML 
Parsing and kXML Parsing (Cache Hit Ratio = 0%) 

Figure 13. Comparing Structure Encoding Based XML 
Parsing and kXML Parsing (Cache Hit Ratio = 100%)

321



that Structure Encoding is a little faster than kXML 
even when cache hit ratio is 0 is likely because of the 
fact that, while we use kXML for tree building, we 
modified it slightly to interface it with our tokenizer, 
which resulted in differences in execution traces and 
slight differences in runtime performance when 
execute in JVM. 

Overall, these two figures demonstrate that Structure 
Encoding based parsing provides substantial speedup 
when structure recurrence is frequent, and incurs low 
overhead when such recurrence is rare.

5.3 Transformation
Similarly, Figure 15 and Figure 16 compare 
transformation speed of Structure Encoding based 
XSL processor against that of XT for both Sender ID 
Assigning and Receiver ID Assigning. Again, under 
Receiver ID Assigning, the underlying tokenizer 
always uses Hash mode, while under Sender ID 
Assigning, the tokenizer uses either Swift mode or 
Nature mode. 

Figure 15 shows the results for the ideal case when 
cache hit ratio is 100%: the median relative speed of 
Structure Encoding based implementation is 5.38 when 
Sender ID Assigning is used, and is 2.72 when 
Receiver ID Assigning is used. The best case is trend,
where the relative speed is over 39 for Sender ID 
Assigning, and over 25 for Receiver ID assigning.

Figure 16 shows the results for the worst case when 
cache hit ratio is 0%: the median relative speed is 
0.996 when Sender ID Assigning is used, and is 0.918 
(or an overhead of 8.9%) when Receiver ID Assigning 
is used. The worst sample is nitf-stylized, where the 
overhead is about 14.6% under Receiver ID Assigning. 

These two figures show that Structure Encoding based 
XSL processing offers even higher potential speedup 
than parsing, yet incurs lower overhead in worst cases. 
This is understandable as, typically, a large portion of 
operations in transformation is for costly structure-
related operations, which we have pre-processed 
offline. Note that, as long as structure recurrence is 
frequent, the potential improvement is very high (up to 
a median relative speed of 2.72) even if the receiver 
has to calculate structure ID through hashing. 

5.4 Compression
We conducted an experiment to examine the 
effectiveness of Structure Encoding based 
compression. In the experiment, for each sample 
document, we randomly changed the values of 3rd, 8th,
13th, … (i.e., one in every 5, starting from the 3rd)
attribute and text node values. Thus our experiment 

Figure 16. Comparing Structure Encoding Based 
Transformation and XT (Cache Hit Ratio = 0%)

Figure 15. Comparing Structure Encoding Based 
Transformation and XT (Cache Hit Ratio = 100%)

Table 3. Compression and its effect on 
tokenization speed (Assuming changes in 20% of 

the text and attribute values) 

Document
Size 

(in KB)

Comp.
Size 

(Byte)

Natur
e

(ms)

Swift
(ms)

Comp
.

(ms)
axis 0.38 48 7.1 4.8 0.8
backwards 2.62 81 33.3 7.4 1.8
chart 1.29 91 18.5 7.7 1.3
book 1.21 129 15.1 8.6 1.1
game 2.62 81 33.1 7.2 1.8
midsummer 146 20760 1990 913.4 111.7
nitf-stylized 5.79 564 67.3 25.1 4.0
recipes 16.7 2355 164.3 99 11.4
sort 10.3 752 129.8 32.2 8.8
sp 3.53 554 36.2 21.5 2.6
total 1.31 91 18.6 6.8 1.3
trend 1.9 169 36.5 10.8 2.7
wai 0.58 15 9.1 4.5 0.6

322



assumes that around 20% of the attribute and text 
values are different from the template values. 

Table 3 lists results from this experiment. The third 
column of the table shows the number of bytes 
transmitted for each sample document, while the 6th

column shows the time used to construct tokens from 
the compressed document. The table shows that, under 
above-described setup, the amount of data transmitted 
are reduced to 2.6% to 15.7% of the original size 
(second column, listed in KB), and the tokenization 
time is reduced to 5.4% to 11.3% of the Nature mode 
tokenization time, or 11.5% to 25% of the Swift mode 
tokenization time. 

5.5 Discussion
Since in our implementations, we make changes to 
base systems (KXML and XT) only when such 
changes are required to implement Structure Encoding, 
performance differences demonstrated in this section 
are caused by differences in techniques rather than 
differences in implementations. 

Our experiments clearly show that Structure Encoding 
can, potentially, greatly improve the efficiency of 
XML processing with relatively low penalty for worst 
cases. The worst case scenario happens when a 
receiver uses hash function to identify the structure of 
a document, only to find out that the document 
structure is not in cache. The penalty it pays for such 
worst case scenario, 11.1% for DOM-style parsing and 
8.9% for transformation, can easily be compensated by 
future structure recurrence. Such cache-miss penalty is 
negligible when sender-assigning scheme is used. 
Systems that are conscious of such client-side penalty 
can let the sender or anyone in the middle of the 
transmission path to assign ID without altering the 
semantics of the message or document. 

Although we didn’t measure the impact of 
compression on parsing and transformation, it can be 
inferred from tables 2 and 3. For example, in the book
case, with tokenization time reduced from 8.6ms 
(Swift mode) to 1.1ms (compressed), parsing time will 
likely be further reduced from 8.8ms to around 1.3ms 
(compared with 24.4ms for KDOM). Similarly, 
transformation time may be further reduced from 
11.5ms to around 4.0ms (compared with 48.3ms for 
XT). In other words, Structure Encoding based XML 
compression offers additional, significant, 
performance improvements for XML parsing and 
transformation in mobile environments, where closely-
coupled proxies commonly exists. With compression 
turned off, Structure Encoding is fully compatible with 
Web specifications and can be used between any two 
Internet hosts, and it still offer very significant 

performance improvements when there is structure 
recurrence.

Without compression, for documents with recurrent 
structures, tokenization and structure hashing cost 
dominates the overall cost for parsing, and is the major 
part of the cost for transformation. Tokenization and 
structure hashing however are relatively simple 
operations that may be implemented in hardware with 
low cost. (In fact, some mobile chipsets already have 
hardware implementation of hash functions such as 
MD5 for security purposes.) If a hardware 
implementation can reduce tokenization and structure 
hashing cost to a fifth of the current cost, then there 
will be additional substantial improvement for the 
parsing and transformation of most of the documents 
used in our experiments.  

In our system, a document having a structure slightly 
different (e.g., added a new element) from a previous 
structure will not be able to reuse the structure 
processing result of the previous structure. However, 
our system pays off as long as this new, slightly 
different structure recurs in future documents. 

6. CONCLUSION, LIMITATIONS, AND 
FUTURE WORK 
In this paper we motivated exploiting structure 
recurrence to speedup XML processing in mobile 
environments, by reducing structure related 
transmission and processing costs. We presented the 
concept of Structure Encoding, and described 
approaches to quickly identifying recurring structures, 
including one using collision-resistant hash function. 
We explained in detail how to use structure encoding 
to speedup XML transmission, tokenization, tree-
building, and transformation. We described our 
implementation of structure encoding based tokenizer, 
DOM parser (based on kXML), XLT processor (based 
on XT), and compression scheme. Our experiments 
conducted on a mobile test-bed demonstrated dramatic 
performance improvement in the presence of structure 
recurrence and low overhead otherwise. In ideal cases, 
structure encoding offers speedups of up to 7 for 
parsing and over 38 for XSL transformation, and up to 
97.4% in size reduction when 20% of the text and 
attribute values change 

Structure encoding, however, is not applicable to all 
XML applications. Rather, it is more applicable to 
data-centric XML processing than to document-centric 
XML processing. A user randomly browsing Web 
pages is not likely to have high structure recurrence 
probabilities. 

323



Our current implementation does not support 
documents with “variable-length arrays” – lists of 
identically structured elements with non-fixed lengths. 
Otherwise identically structured documents with 
different array lengths are currently considered as 
having different structure.  

We are currently working on supporting “variable-
length arrays” to extend the applicability of Structure 
Encoding. We are also looking at provide similar, but 
less aggressive, optimization support for schema-
conforming documents. 

REFERENCES
[1] Nokia Web Services – Helping Operators Mobilize the 

Internet.
Http://www.projectliberty.org/resources/whitepapers/W
S_Operators_A4_0408.pdf.

[2] The SAX Project. http://www.saxproject.org/. 

[3] XML Pull Parsing. http://www.xmlpull.org/ 

[4] W3C Document Object Model. 
http://www.w3.org/DOM/ 

[5] WAP Binary XML Content Format. 
http://www.w3.org/TR/wbxml/ 

[6] Efficiency Structured XML. http://www.esxml.org/ 

[7] VTD-XML. http://vtd-xml.sourceforge.net/ 

[8] XSLTC Documentation. http://xml.apache.org/xalan-
j/xsltc/

[9] kXML. http://www.kxml.org/ 

[10] Liefke, H. and D. Suciu. XMill: An Efficient 
Compressor for XML Data. In Proc. of the ACM 
SIGMOD Conference on Management of Data. May, 
2000.

[11] Liu, L., C. Pu, and W. Tang. WebCQ: Detecting and 
Delivering Information Changes on the Web" In the 
Proceedings of International Conference on Information 
and Knowledge Management (CIKM), Nov. 7-10, 2000. 

[12] The XT XSLT processor. 
http://www.blnz.com/xt/index.html

[13] Sarvega,Inc. http://www.sarvega.com/ 

[14] DataPower Technology, Inc. 
http://www.datapower.com/ 

[15] Rax Content Processor. 
http://www.tarari.com/rax/index.html 

[16] The Sarvega XSLT Benchmark Study, Sarvega Inc. 
http://www.sarvega.com/xslt-benchmark.php.

[17] XSLTMark. 
http://www.datapower.com/xmldev/xsltmark.html 

[18] Eisenhauer, G. and L. K. Daley. Fast Heterogenous 
Binary Data Interchange. In Proceedings of the 9th 
Heterogeneous Computing Workshop (HCW 2000), pp 
90-101.

[19] Bustamente, F., G. Eisenhauer, K.Schwan, and P. 
Widener. Efficient Wire Formats for High Performance 
Computing. In Proceedings of High Performance 
Networking and Computing Conference, 2000 
(SC’2000).

[20] Toshiro Takase, Hisashi Miyashita, Toyotaro 
Suzumura, and Michiaki Tatsubori, An Adaptive, Fast, 
and Safe XML Parser Based on Byte Sequence 
Memorization. In Proc. of WWW’2005. 

[21] XML-RPC. http://www.xmlrpc.com/ 

[22] Open  Mobile Alliance. 
http://www.openmobilealliance.org/

[23] RSS 2.0 Specification. 
http://blogs.law.harvard.edu/tech/rss

[24] Open Mobile Alliance. 
http://www.openmobilealliance.org/

[25]Mogul, J., F. Douglis, A. Feldman, and B. 
Krishnamurthy. Potential benefits of delta-
encoding and compression for HTTP. In Proc. 
SIGCOMM’97, 1997. 

[26]Spring, N. T., and D. Wetherall. A protocol-
independent technique for eliminating redundant 
network traffic. In Proc. SIGCOMM’00, 2000. 

[27]Chiu, K., and W. Lu. A Compiler-Based 
Approach to Schema-Specific XML Parsing. In 
First International Workshop on High 
Performance XML Processing, May 2004. 

[28]Matsa, M., E. Perkins, A. Heifets, M. G.aitatzes 
Kostoulas, D. Silva, N. Mendelsohn, M. Leger. A 
high-performance interpretive approach to 
schema-directed parsing. In Proceedings of the 
16th International Conference on World Wide 
Web, 2007. 

[29]Noga, M. L., Schott, S., and Löwe, W. 2002. Lazy 
XML processing. In Proceedings of the 2002 
ACM Symposium on Document Engineering 
(McLean, Virginia, USA, November 08 - 09, 
2002). DocEng '02. ACM, New York, NY. 

[30]Farfán, F., V. Hristidis and R. Rangaswami. 
Beyond Lazy XML Parsing. In Proceedings of the 
18th International Conference (DEXA 200), 
September 3-7, 2007.

 

324


