
Addressing Performance and Security
in a Screen Reading Web Application that Enables Accessibility Anywhere

Jeffrey P. Bigham Craig M. Prince

Department of Computer Science and Engineering
University of Washington
Seattle, WA, 98195 USA

{jbigham, cmprince, ladner}@cs.washington.edu

Richard E. Ladner

Abstract

The web provides nearly ubiquitous access to informa-
tion, but access for blind web users requires the use of ex-
pensive, specialized software programs called screen read-
ers unlikely to be installed on most computers. WebAny-
where is a self-voicing, web-browsing web application that
makes the web accessible for blind web users from most de-
vices with web access. WebAnywhere requires no special
permissions or additional software to be installed on the
host machine, enabling it provide a self-voicing interface on
almost any web-enabled device. WebAnywhere’s interface
is written in Javascript, speech is retrieved from a remote
server, and sounds are played using either Flash or exist-
ing embedded sound players. This paper describes the per-
formance and security implications of the system’s unique
design and how it has been engineered to provide usable
access anywhere. Specifically, we present prefetching and
caching strategies developed to make the system responsive
even on low-bandwidth connections and security consider-
ations that replicate existing browser security policies.

1. Introduction

Blind computer users rely on software programs called
screen readers to convert visual interfaces and information
to aural speech. In addition to voicing content, screen read-
ers also provide shortcut keys that make using a computer
non-visually and without a mouse both more efficient and
possible. Worldwide there are more than 38 million blind
individuals (more than 1 million in the United States) whose
access to the web depends on using a screen reader [29].
Popular screen readers are expensive, costing nearly a thou-
sand dollars for each installation because of their complex-
ity, relatively small market and high support costs. Be-

cause popular screen readers are expensive and because
most users do not require them for access, screen readers
are not installed on most computers. Some free alternatives
can be downloaded or carried on a USB drive, but involve
running new software on the host computer (often not al-
lowed on public terminals). This leaves blind users on-the-
go unable to access the web from computer they happen
to have access to and many blind users unable to afford a
pricey screen reader unable to access the web at all.

WebAnywhere [7] is a self-voicing, web-browsing web
application that can be used by blind individuals to access
the web from almost any computer that has both an Inter-
net connection and audio output. User studies with blind
participants indicated that they (i) saw a need for such a
system, (ii) were able to complete web-based tasks, such as
checking a web-based email account or looking up a phone
number, and (iii) wanted to use WebAnywhere in the future.

When users open WebAnywhere’s homepage it speaks
the contents of the page that is currently loaded (initially
a welcome page). WebAnywhere voices both its interface
and the content of the current web page. Users can navigate
from this starting page to any other web page and the Web-
Anywhere interface will speak those pages to the user as
well. No separate software needs to be downloaded or run
by the user; the system runs entirely as a web application
with minimal permissions.

WebAnywhere includes much of the functionality in-
cluded in existing screen readers for enabling users to in-
teract with web pages. The system traverses the DOM of
each loaded web page using a pre-order Depth First Search
(DFS), which is approximately top-to-bottom, left-to-right
in the visual page. As the system’s cursor reaches each el-
ement of the DOM, it speaks the element’s textual repre-
sentation to the user (Figure 1). For instance, upon reach-
ing a link containing the text “Google,” it will speak “Link
Google.” Users can follow the link by pressing enter. They

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.47

273

can also skip forward or backward in this content by sen-
tence, word or character. Users can also skip through page
content by headings, input elements, links, paragraphs and
tables. In input fields, the system speaks the characters
typed by the user and allows them to review what they have
typed.

We used the following design goals while developing
WebAnywhere in order to ensure that it would be accessible
and usable on most computers:

1. WebAnywhere should replicate the functionality and
security provided by traditional screen readers when
used to browse the web.

2. In order to work on as many web-enabled devices and
public computer terminals as possible, WebAnywhere
should not require special software or permissions on
the host machine in order to run.

3. WebAnywhere should be usable: users should not be
substantially affected or aware of the engineering de-
cisions made in order to satisfy the first two goals.

This paper overviews the decisions that we made in or-
der to create a usable system that satisfies these goals. We
will first discuss the design of WebAnywhere and how it
is able to provide a self-voicing interface to the web with-
out requiring software to be installed or special permission
on the host machine. The two key features of this are that
(i) speech sounds are generated remotely and then played
using generic audio players on from the browser, and (ii)
the WebAnywhere interface is written entirely in client-
side Javascript. We will then discuss the prefetching and
caching strategies we have developed in order to reduce la-
tency while retrieving speech remotely and next evaluate
those strategies in realistic settings. Finally, we will dis-
cuss how we have addressed security concerns raised by the
unique design of WebAnywhere.

2. The WebAnywhere System

WebAnywhere is designed to function on most comput-
ers that have Internet access and that can play sound. To
this end, its design has carefully considered independence
from a particular web browser or plugin. To facilitate its use
on public systems with varying capabilities and on which
users may not have permission to install new software, func-
tionality that would require this has been moved to a re-
mote server. The web application can play sound using
several different sound players commonly available on web
browsers.

The system consists of the following three components
(Figure 2): (i) client-side Javascript, which supports user in-
teraction, decides which sounds to play and interfaces with

http://www.webengineering.org

Play Time (seconds)

WebAnywhere
Browser Frame

Replicates browser functionality

and provides a screen reading

interface to both web content

and browser functions.

WebAnywhere
Content Frame

Loads web content via a web

proxy server. Browser frame

voices the web content loaded

here.

Action Speech Sound

CTRL h+

CTRL h+

TAB

Page has loaded.

ICWE 2008

Welcome.

Image ICWE 2008

TAB Link: Home.

Link: Open Calls.

Heading 1

Welcome

Heading 2

Important Deadline Ahead

0.0 1.0 2.0

7.9 kB

12.1 kB

4.4 kB

4.4 kB

4.4 kB

5.7 kB

9.2 kB

5.6 kB

5.6 kB

10.7 kB

Figure 1. Browsing the ICWE 2008 homepage
with the WebAnywhere self-voicing, web-
browsing web application. Users use the key-
board to interact with WebAnywhere like they
would with their own screen readers. Here,
the user has pressed the TAB key to skip to
the next focusable element, and CTRL+h to
skip to the next heading element. Both web
content and interfaces are voiced to enable
blind web users access.

sound players to play them, (ii) server-side text-to-speech
generation and caching, and (iii) a server-side transforma-
tion proxy that makes web pages appear to come from a
local server to overcome violations of the same-origin secu-
rity policy enforced by most web browsers. WebAnywhere
consists of less than 100 KB of data in four files, and that is
all a user needs to download to begin using the system.

2.1. WebAnywhere Script

The client-side portion of WebAnywhere forms a self-
voicing web browser that can be run inside an existing web

274

User

WA

Script

Web

Proxy

Personal Settings

WebAnywhere

Script

Embedded

Players

Sound Players

Flash Player

Transformed

Web Page

Client

Text to

Speech

Speech Cache

Web

Page

Server Web Client Browser

Audio

Output

Keyboard

Input

Figure 2. The WebAnywhere system consists of server-side components that convert text to speech
and proxy web content; and client-side components that provide the user interface and coordinate
what speech will be played and play the speech. Users interact with the system using the keyboard.

browser (Figure 1). The system is written in cross-browser
Javascript that is downloaded from the server, allowing it
to be run in most modern web browsers, including Fire-
fox, Internet Explorer and Safari. The system captures all
key events, allowing it to both provide a rich set of key-
board commands like what users are accustomed to in their
usual screen readers and to maintain control of the brow-
ser window. WebAnywhere’s use of Javascript to capture a
rich set of user interaction is similar to that of UsaProxy [4]
and Google Analytics1, which are used to gather web usage
statistics.

Web pages viewed in the system are loaded through a
modified version of the web-based proxy PHProxy [3]. This
enables the system to bypass the same-origin policy that
prevents scripts from accessing content loaded from other
domains. Without this step, the scripts retrieved from Web-
Anywhere’s domain would not be able to traverse the Doc-
ument Object Model (DOM) of pages that are retrieved,
for instance, from google.com. Deliberately bypassing the
same-origin policy can introduce security concerns, which
we address in Section 6.

2.2. Producing and Playing Speech

Speech is produced on separate speech servers. Our cur-
rent system uses the free Festival Text-to-Speech System

1http://analytics.google.com

[28] because it is distributed along with the Fedora Linux
distribution on which the rest of the system runs. The
sounds produced by the Festival Text to Speech (TTS) sys-
tem are converted server-side to the MP3 format because
this format can be played by most sound players already
available in browsers and because it creates small files nec-
essary for achieving our goal of low latency. For example,
the sound “Welcome to WebAnywhere,” played when the
system loads, is approximately 10k, while the single letter
“t”, played when users type the letter, is 3k. See Figure 1 for
more examples of how the speech sounds in WebAnywhere
are generated and used.

Sounds are cached on the server so they don’t need to be
generated again by the TTS service and on the client as part
of the existing browser cache. For most efficient caching,
WebAnywhere would generate a separate sound for each
word, but this results in choppy-sounding speech. Another
option would be to generate a single speech sound for an
entire web page, but this would prevent the system from
providing its rich interface. Sound players already installed
in the browser do not support jumping to arbitrary places
in a sound file as would be required when a user decides
that they want to skip to the middle of the page. Instead,
the system generates a separate sound for each phrase and
the WebAnywhere script coordinates which sound to play
based on user input.

The system primarily uses the SoundManager 2 Flash
Object [26] for playing sound. This Flash object provides

275

a Javascript bridge between the WebAnywhere Javascript
code and the Flash sound player. It provides an event-
based API for sound playback that includes an onfinish
event that signals when a sound has finished playing. It is
also able to begin playing sounds before they have finished
downloading using streaming, which results in lower per-
ceived latency. Adobe reports that version 8 or later of the
Flash player, required for Sound Manager 2, is installed on
98.5% of computers [1].

To enable the system to operate on more systems, we
have also developed our own Javascript API for playing
speech using embedded players, such as Quicktime or the
Windows Media Player. The existing API for controlling
embedded players is limited and makes precise reaction to
sounds that are being played difficult. While programmatic
methods exist for playing and stopping audio files, they do
not implement an onfinish event that would provide a
programmatic method for determining when a sound has
finished playing. WebAnywhere relies on this information
to tell it when it should start playing the next sound in the
page when a user is reading through a page. We initially
required users to manually advance sounds, but this proved
cumbersome and caused the system to act differently based
on which sound player was being used. It was also frus-
trating for users to read a large section of a page as they
have become accustomed to doing using their usual screen
readers.

To enable WebAnywhere to simulate an onfinish
event for embedded sound players, the TTS service includes
a header in its HTTP responses that specifies the length of
each speech sound. Before programmatically embedding
each sound file into the page, WebAnywhere first issues an
xmlHttpRequest for the file and records the length of the
returned sound. The mechanism used to retrieve sounds
programmatically is the same as will be used for prefetch-
ing sounds, which be discussed later. WebAnywhere then
sets a timer for slightly longer than the length of the sound
and finally inserts an embedded player for the sound into
the navigation frame. Because the sound has already been
retrieved via the programmatic request, it is located in the
cache and the embedded player can start playing it almost
immediately - there is a small delay for the embedded player
to load and begin playing the sound. The timer is used as
an onfinish event signaling that the sound has stopped
playing and the next sound in the queue of sounds to play
should be played.

3. Related Work

Prior work has used transcoding proxy servers to mod-
ify web content in order to produce content that is more
easily viewed by users in specific groups, such as blind
web users using screen readers [15, 14] or mobile phone

users viewing content on small screens [2, 8]. The AxsJAX
project [12] enables ordinary web pages and web applica-
tions to behave more like self-voicing applications by pro-
viding additional markup and shortcut keys through injected
Javascript scripts. These systems all work with and require
a screen reader to be installed, while, in contrast, WebAny-
where modifies content in order to provide a self-voicing
interface to the web directly from a web page.

Many existing products provide a screen-reading inter-
face to web content (for a comprehensive survey, see [7]).
Most require users to either carry expensive mobile devices
with them or to download and install software on machines
that they visit. These mobile devices cost more than $1,000
US when the cost for both the mobile device and the screen
reader is combined, which many potential users cannot af-
ford. Others may not want to be required to carry such ex-
pensive devices. Importantly, many public terminals do not
allow users to install new software and many existing screen
readers will not run on the diversity of platforms powering
web-enabled devices.

The remainder of this section first overviews available
screen readers that run as processes on the client machine
and then surveys self-voicing web pages that provide a
speech-enabled interface to a limited portion of web con-
tent.

3.1. Client Screen Readers

Traditional screen readers, such as JAWS [16] and
Window-Eyes [30], run as independent processes on the
client machine. These programs generate speech by query-
ing separate processes on the machine responsible for TTS
conversion. Because the TTS service is located on the same
machine as the user, the speech is usually sent directly to
the sound card of the client machine, meaning the screen
reader does not need to be aware of the internals of the TTS
service. Because generating speech is fast enough when
only one user is requesting the service, the speech sounds
generated are not generally cached. The Firefox extension
Fire Vox [10] turns the Firefox browser into a self-voicing
browser. Like WebAnywhere, it is implemented primarily
in Javascript, but it also retrieves its speech from a local
TTS server. Its Javascript operates in a privileged mode,
and, therefore, can interact with the browser interface di-
rectly.

The Serotek System Access Mobile (SAM) [27] reader
designed is designed to run directly from a USB key on
Windows computers without prior installation. It is avail-
able for $500 US and still requires access to a USB port and
permission to run arbitrary executables. The Serotek Sys-
tem Access to Go (SA-to-Go) screen reader can be down-
loaded from the web via a speech-enabled web page, but
the program requires Windows, Internet Explorer, and per-

276

mission to run executables on the computer. This prod-
uct has recently been made freely available by the AIR
Foundation2, who also provide a self-voicing Flash inter-
face for downloading and running the screen reader. Start-
ing this system requires downloading more than 10 MB of
data, compared to WebAnywhere’s 100 kB. WebAnywhere,
therefore, may be more appropriate for quickly checking
email or looking up information, even on systems where
SA-to-Go is able to run.

All of these existing screen readers are restricted in
where they can be installed both because they require the
user to have permission to install them and because each
will only run on a specific platform - JAWS, Window-Eyes,
and the Serotek tools require the Windows operating sys-
tem and Firefox Vox requires the Firefox web browser to
be installed. As a web application, WebAnywhere can run
on most web-enabled devices, and remains agnostic to the
specific operating system and browser that is used.

A small number of web pages voice their own content,
but most have limited use as an accessible interface for
screen reader users either because the scope of information
that is provided is limited or because they lack an accessi-
ble interface for navigation. Talklets enable web developers
to provide a spoken version of their web pages as a single
file that users cannot control3. Scribd.com provides a un-
voiced interface for converting documents to speech4, but
the speech is available only as a single MP3 file that does
not support interactive navigation. The National Associa-
tion for the Blind, India, provides access to a portion of
their web content via a self-voicing Flash Movie that pro-
vides keyboard commands for navigation5, but the infor-
mation contained in the separate Flash movie is not com-
prehensive of the entire web site, which could be read by
WebAnywhere. None of these techniques use caching or
prefetching to improve the latency of sound retrieval. For
most sounds, users must simply accept any latency, while
a limited number of sounds are embedded into the Flash
movie itself, making interaction fast once the movie has
downloaded.

4. Reducing Latency

WebAnywhere uses remote text-to-speech conversion,
and the latency of requesting, generating and retrieving
speech could potentially disrupt the user experience. Be-
cause the sound players used in WebAnywhere are able to
play sounds soon after they begin downloading, latency is
low on high-speed connections but can be noticeable on
slower connections. Latency of retrieving speech is an im-

2www.accessibilityisaright.org
3www.talklets.com
4www.scribd.com
5www.nabindia.com

WebAnywhere

Browser Cache (MB)

Server Cache (GB)

Text-to-Speech Server

Fast.

Slower.

Slow.P
re
fe
tc
h
in
g

Figure 3. Retrieving sounds involves caching
and prefetching on both the server and client.

portant factor in the system because it directly determines
the user-perceived latency of the system. When a user hits
a key, they know that the system has responded only when
the sound that should be played in response to that key press
is played by the system.

To reduce the perceived latency of retrieving speech, the
system aggressively caches the speech that is generated by
the TTS service on both the server and client. In order to
increase the likelihood that the speech a user wants to be
played is in the cache when they want to play it, the system
can use several different prefetching strategies designed to
prime these caches. Prefetching has been explored before
as a way to reduce web latency [21] and has been shown to
dramatically reduce the latency for general web browsing
[18]. Traditional screen readers running as processes on the
client machine do not require prefetching because generat-
ing and playing sound has low latency. Web applications
have long used prefetching as a mechanism for reducing
the delay introduced by network latency. For instance, web
applications that use dynamic images use Javascript scripts
to preload images to make these changes appear more re-
sponsive. The prefetching and caching strategies explored
in WebAnywhere may also be useful for visually rich web
applications.

4.1. Caching

The system uses caching on both the server and client
browser in order to reduce the perceived latency of re-
trieving speech. TTS conversion is a relatively processor-
intensive task. To reduce how often speech must be gen-
erated from scratch, WebAnywhere stores the speech that

277

is generated on a hard disk on the server. While hard disk
seek times can be slow, their latency is low compared with
the cost of generating the speech again.

The speech that is retrieved from the client is cached on
the client machine by the browser. Most browsers maintain
their own caches of files retrieved from the web, and an
unprivileged web application such as WebAnywhere does
not have permission to directly set either the the size of the
cache or the cache replacement policy, and WebAnywhere
does not attempt to do so. Flash uses the regular browser
cache. Both the Internet Explorer and Firefox disk caches
default to 50 Megabytes, which can hold a large number of
the relatively small MP3 files used to represent speech.

The performance implications of these caching strategies
are explored in Section 5.1.

4.2. Prefetching Speech

The goal of prefetching in WebAnywhere is to determine
what text the user is likely to want to play as speech in the
future and increase the likelihood that the speech sounds re-
quested are in the web browser’s cache by the time that the
user wants them to be played. The browser cache is stored
in a combination of memory and hard disk, and retrieving
sounds to play from it is a very low-latency operation rel-
ative to retrieving sounds from the remote WebAnywhere
server. The distribution of requested speech sounds is ex-
pected to be Zipf-like [9], resulting in most popular sounds
already likely to be in the cache, but a long tail of speech
sounds that have not been generated before.

All prefetching strategies add strings to a priority queue,
which a separate prefetching thread uses to prioritize which
strings should be converted to speech. We explored sev-
eral different strategies for deciding what strings should be
given highest prefetching priority by the system. The func-
tion of each strategy is to determine the priority that should
be assigned to each string.

To prefetch speech sounds, the prefetching thread issues
an xmlHttpRequest request for the speech sound (MP3) rep-
resenting each string from its queue. This populates the
browser’s local cache, so that when the sound is requested
later, it is retrieved quickly from the cache. We next present
several different prefetching strategies that we have imple-
mented. Section 5.3 presents a comparison of these strate-
gies.

4.2.1 DFS Prefetching

WebAnywhere and other screen readers traverse the DOM
using a pre-order Depth First Search (DFS). The basic pre-
fetching mode of the WebAnywhere system performs a sep-
arate DFS of the DOM that inserts the text that will be spo-
ken for each node in the DOM into the priority queue with

a weight corresponding to its order in the DFS traversal of
the DOM. This method retrieves speech sounds in the or-
der in which users would reach them if they were to read
through a page in the natural top-to-bottom, left-to-right or-
der. If users either normally read in this order and if they do
not read through the page more quickly than the prefetch-
ing is able to be performed, then this strategy should work
well. However, blind web users are known for leveraging
the large number of shortcut keys made available by their
screen readers to skip around in web content [11, 6], so it
is worthwhile considering other strategies that may better
address this usage.

4.2.2 DFS Prefetching + Position Update

The system could better adapt if it updated the nodes to be
prefetched based on the node currently being read. This
could prevent nodes that have already been skipped by the
user from being prefetched and taking bandwidth that could
otherwise be used to download sounds that are more likely
to be played. The DFS+Update prefetching algorithm in-
cludes support for changing its position in prefetching. For
example, if the prefetcher is working on content near the top
of the page when a user skips to the middle of the page us-
ing the the find functionality, the prefetcher will be able to
update its current position and continue prefetching at the
new location. When the user skips ahead in the page, the
priority of elements in the queue are updated to reflect the
new position. These updates make prefetching more likely
to improve performance.

4.2.3 DFS Prefetching + Prediction

WebAnywhere also prefetches sounds based on a personal-
ized, predictive model of user behavior. The shortcut keys
supported by the system are rich, but users frequently em-
ploy only a few. Furthermore, users do not randomly skip
through the page; meaning that, the likelihood that a user
will issue each keyboard shortcut can be inferred from such
factors as the keys that they previously pressed and the node
that is currently being read. For instance, a user who has
pressed TAB to move from one link to the next is more
likely to press TAB again upon reaching another link than is
a user who has been reading through the page sequentially.
Similarly, some users may frequently skip forward by form
element, while others may rarely do so.

To use such behavior patterns to improve the efficacy of
prefetching, WebAnywhere records each user’s interactions
with the system and uses this empirical data to construct a
predictive model. The model is used to predict which ac-
tions the user is most likely to take at each point, helping
to direct the prefetcher to retrieve those sounds most likely
to be played. An action is defined as a shortcut key pressed
by the user. WebAnywhere records the history of actions

278

performed by the user and the history of the current node
types associated with each. The system distinguishes three
types: link, input element, and other. These actions were
chosen because they roughly align with the most popular
actions currently implemented in the system and could be
expanded in the future.

The probability of the next action actioni being action x
assuming that the next action depends only on prior obser-
vations of actions and visited nodes is as follows:

P (actioni = x|node0, ..., nodei, action0, ..., actioni−1)

WebAnywhere uses the standard Markov assumption to
estimate this probability by looking back only one time step
[25]. Therefore, the probability that the user’s next action is
x given the type of the current node and the user’s previous
action can be expressed as follows:

P (actioni = x|nodei, actioni−1)

All actions are initially assigned uniform probability.
These probabilities are dynamically updated as the system
is used and sounds in the priority queue are weighted using
them. To be specific, for each possible condition (combi-
nation of previous action and type of the current node) w,
a count cw(x) is maintained. The count for each possible
condition is initially set to 1 and is incremented by 1 when
the event x occurs in condition w. An event x is defined
as the user taking a specified action while in a particular
condition. The probability of each new action can then be
calculated as follows:

P (actioni = x|nodei, actioni−1 = w) =
cw(x)/

∑
y cw(y).

WebAnywhere reweights nodes in the priority queue
used for prefetching according to these probabilities. Sec-
tion 5.2 presents an evaluation of the accuracy of predictive
prefetching.

5. Evaluation

We evaluated the system along several dimensions, in-
cluding both how caching improves the performance of the
system and the load that it can withstand, and the accuracy
and latency effects of the prefetch strategies discussed in
Section 4.2.

5.1. Server Load

In order for us to release the system, we must be able to
support a reasonable number of simultaneous users per ma-
chine. In this section, we present our evaluation the perfor-
mance of the WebAnywhere speech retrieval system under

0

No Cache Server Cache Server + Browser Cache

Number of Simultaneous Users

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
s

e
c

)

1

2

3

4

5 10 15 20

5

6

Figure 4. An evaluation of server load as
the number of simultaneous users reading
news.google.com is increased for 3 different
caching combinations.

increasing load, while varying the caching and prefetching
strategies used by the system.

We chose to evaluate the latency of sound retrieval be-
cause it will contribute most to the perceived latency of the
system. When users press a key, they expect the appropri-
ate speech sound to be played immediately. The TTS sys-
tem and cache were running on a single machine with a
2.26 GHz Intel Pentium 4 Processor and 1 GB of memory.
To implement this evaluation, we first recorded the first 250
requests that the system made for speech sounds when read-
ing news.google.com from top to bottom. This represented
a total of 446 seconds of speech with an average file size of
11.7 kB over the 250 retrieved files. A multi-threaded script
was used to replay those requests for any number of users.
The script first retrieves a speech sound and then waits for
the length of the speech sound. It repeats this process until
all of the recorded sounds have completed, reproducing the
requests that WebAnywhere would make when reading the
page. This script was run on a separate machine that issued
requests over a high-speed connection to the WebAnywhere
server.

We tested the following three caching conditions: (i)
both server and browser caching enabled, (ii) only server
caching enabled, and (iii) no caching enabled. Speech
sounds were assumed to be in the server cache when it
was used. Speech sounds were added to the browser cache
as they were retrieved. Figure 4 presents the results of
our evaluation, which demonstrates that TTS production is
the major bottleneck in the system. Latency of retrieved
speech quickly increases as the system attempts to serve

279

more than 10 users. With server-side caching, this is dra-
matically improved. Client-side caching in the browser im-
proves slightly more, although its effect is limited because
in this example because relatively few speech sounds are
repeated. Repeated sounds include “link,” which is said be-
fore each link that is read, and “Associated Press,” which
appears frequently because this is a news site. As we move
toward releasing WebAnywhere to a larger audience, we
will continue to evaluate its performance under real-world
conditions.

A number of assumptions were made that may not be up-
held in practice. For example, the system will not achieve
the perfect server-side cache hit-rate assumed here, al-
though both the server and browser caches will likely have
had more opportunity to be primed when users read through
multiple pages. Most users also do not read pages straight
through. As we have observed users using the system, we
have seen users most often skipping around through the
page, often returning to nodes that they had visited be-
fore, causing speech already retrieved by the browser to be
played again. In this initial system we have also not opti-
mized the TTS generation or the cache routines themselves
but could likely achieve better results by doing so. Finally,
latency here was calculated as the delay between when a
speech sound was requested and when it was retrieved. In
practice, the Flash sound player can stream sounds and be-
gin playing them much earlier. Despite its limitations, this
evaluation generally illustrates the performance of the cur-
rent system and future development should be targeted.

5.2. Prefetching Accuracy

This section presents an analysis of the predictive power
of the DFS+Prediction method described in Section 4.2.3.
To conduct this study we collected traces of the interactions
of 3 users of WebAnywhere in a study that we previously
presented [7]. In that study, users completed the following
four tasks using WebAnywhere: checking their email on
gmail.com, looking up the next arrival of a bus, finding the
phone number of a restaurant using google.com and com-
pleting a web survey about WebAnywhere.

In total, we recorded 2632 individual key presses. 1110
of these were not command key presses and resulted in
the name of a key being spoken, for instance “a” or “for-
ward slash.” The system prefetches these keys automati-
cally when it first loads. 1522 of these key presses were
commands that caused the screen reader to read a new ele-
ment in the page. For instance, the TAB key which would
cause WebAnywhere to advance its internal cursor to the
next focusable page element and read it to the user. Using
this data, we computed the probability of each future action
given the current node and the user’s previous action as de-
scribed earlier. Figure 5 shows the counts that we recorded.

ne
xt
 n

od
e_

_

ne
xt
 in

pu
t_

_

pr
io
r i

np
ut

__

ne
xt
 fo

cu
sa

bl
e_

_

pr
io
r f

oc
us

ab
le
__

pr
io
r n

od
e_

_

pr
io
r h

ea
di
ng

__

ne
xt
 h

ea
di
ng

__

Link

Other

All

Observed

Actions

Input

Node Prior Action
next node

prior node

next focusable

prior focusable

next focusable

next node

prior node

next input

next node

next focusable
prior node

next node
prior node

next focusable

prior focusable

prior heading

prior input

next heading

next input

next heading

83 05 00 00 03 00 00 00

00 00 60 01 01 00 00 00

00 01 04 09 00 00 00 00

03 06 00 00 00 00 00 00

05 07 117 16 00 00 00 00

17 56 02 02 00 00 00 00

33 10 12 01 01 00 00 00

00 00 08 00 01 00 16 00

91 08 03 00 03 00 03 00

06 02 36 12 01 00 01 00

11 23 03 00 02 00 00 00

07 00 00 00 15 00 00 00

11 09 213 29 02 00 01 00

207 23 15 01 07 00 03 00

31 85 00 02 02 00 00 00

01 05 22 25 00 00 00 00

12 01 00 00 19 00 01 00

01 00 09 00 01 00 18 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

Actions Observed

Figure 5. Counts of recorded actions along
with the contexts in which they were
recorded (current node and prior action), or-
dered by observed frequency.

From this data, it appears that users are more likely to is-
sue a keyboard command again after issuing it once. Some
commands are also more likely given certain types of nodes,
for instance users are more likely to request the next input
element when the cursor is currently located on an input el-
ement.

We replayed the traces in order to build the models that
would have been created when a user browsed using Web-
Anywhere in order to measure the system’s accuracy in pre-
dicting the user’s next action. Using the Markov model to
predict the next action that the user is likely to choose is
able to correctly predict the next action in 72.4% of cases.
However, simply predicting that the user will choose to re-
peat the action they just performed predicts the next action
in 74.5% of cases. Markov prediction is still useful because
it can quickly adapt to individual users whose behavior may
not follow this particular pattern. Its predictions also enable
prefetching of the second-most-likely action. The true ac-
tion is in the two most likely candidates in 87.3% of cases.

Predictive prefetching is quite accurate. The next sec-
tion explores how that accuracy manifests in the perceived
latency of the system.

280

5.3. Observed Latency

The main difference between WebAnywhere and other
screen readers is that WebAnywhere generates speech re-
motely and transfers it to the client for playback. Existing
screen readers play sounds with almost no latency because
the sounds are both generated and played on the client. To
better understand the latency trade-offs inherent in Web-
Anywhere and the implemented prefetching algorithms, we
performed a series of experiments designed to test latency
under various conditions. A summary of these results is
presented in Figure 6.

For all experiments, we report the average latency per
sound on both a dial-up and a high-speed connection, whose
connection speeds were 44 kBps and 791 kBps, respec-
tively. Although 63% of public libraries have high-speed
connections in the United States [5], a dial-up connection
may better represent speeds available in many communities.
Timing was recorded and aggregated within the WebAny-
where client script. The latency of a sound is the time be-
tween when the sound is requested by the client-side script
and when that sound begins playing. The average latency is
the time that one should expect to wait before each sound
is played. Because the system streams audio files, the en-
tire sound does not need to be loaded when it starts playing.
Experiments were conducted on a single computer and the
browser cache was cleared between experiments.

We first compared the DFS prefetching strategy to using
no prefetching on a straight-through read of the 5 web pages
visited most often by blind users in a study of browsing be-
havior [6]. We did not test the other prefetching methods
because absent user interaction they operate identically to
DFS prefetching. On these tests, the average latency for
the high-speed connection was under 500 ms even without
prefetching and under 100 ms with prefetching (Figure 6).
Delays under 200 ms generally are not perceivable by users
[19] and this may explain why most users did not cite la-
tency as a concern with WebAnywhere during a user eval-
uation of it [7]. The dial-up connection recorded latencies
above 2 seconds per sound for all five web pages, making it
almost unusable without prefetching. The latency with pre-
fetching averages less than one second per sound, and the
average length of all sounds was 2.4 seconds.

Screen reader users often skip around in content instead
of reading it straight through. Using recordings of the ac-
tions performed by participants during a user evaluation [7],
we identified the common methods used to complete the
tasks and replayed them manually to see the effect of dif-
ferent prefetching strategies on these tasks. Recording and
then replaying actions in order to test web performance un-
der varying strategies has been done before [17]. The pre-
fetching strategies tested were DFS-DOM traversal, DFS
with dynamic updating and Markov model prediction.

Observed latency was again quite low for runs using the
high-speed connection. When using the dial-up connec-
tion, however, the results differed dramatically. On both
the GMail and Google tasks, DFS prefetching increased the
latency of retrieving sounds. This happened because our
participants used skipping extensively on these sites and
quickly moved beyond the point in the DOM where the
prefetcher was retrieving sounds. When this happened, the
prefetcher used bandwidth to retrieve speech that the user
was not going to play later, slowing the retrieval of speech
that would be played. Only the survey task showed a sig-
nificant benefit for the predictive model of user behavior.
On this task, participants exhibited a regular pattern of tab-
bing from selection box to selection box, making their ac-
tions easy to correctly determine. Importantly, the predic-
tion method did not perform worse than the Update method,
and both far outperformed both DFS and no prefetching.

6. Security

WebAnywhere enables users to browse arbitrary web
content, and that content must be considered untrusted. Be-
cause WebAnywhere is a web application running inside
the browser with no special permissions, it lacks many of
the usual mechanisms that web browsers use to enforce se-
curity. In this section, we describe the security concerns
resulting from our engineering decisions in building Web-
Anywhere and the steps we have taken to address them.

6.1. Enforcing the Same-Origin Policy

The primary security policy that web browsers enforce is
called the same-origin policy, which prevents scripts loaded
from one web domain from accessing scripts or documents
loaded from another domain [24]. This policy restricts
scripts from google.com from accessing content on, for in-
stance, yahoo.com. To enable WebAnywhere to access and
voice the contents of the pages its users want to visit, the
system retrieves all web content through a web proxy in or-
der to bypass the same-origin restriction. This makes all
content appear to originate from the WebAnywhere domain
(for these examples, assume wadomain.org) and affords the
WebAnywhere script access to that content.

Although violating the same-origin policy enables Web-
Anywhere to operate, it also gives malicious web sites an
opportunity to violate the security guarantees that users ex-
pect, potentially accessing information to which they should
not have access. We advise users not to access important
personal information while using WebAnywhere, but want
users to have access to private information contained in such
resources as online email accounts or calendars.

WebAnywhere cannot directly enforce the same-origin
policy, and so it instead ensures that all content retrieved

281

google mybus survey

A
v

e
ra

g
e

 L
a

te
n

c
y

 p
e

r

S
o

u
n

d
 (

m
s

)

0

User Evaluation Tasks Popular Web Pages

amazon

None

DFS

Update

Prediction

google yahoo facebook livejournal

4000

1000

2000

3000

gmail

google mybus survey

A
v

e
ra

g
e

 L
a

te
n

c
y

 p
e

r

S
o

u
n

d
 (

m
s

)

0

User Evaluation Tasks Popular Web Pages

amazon

None

DFS

Update

Prediction

google yahoo facebook livejournal

400

100

200

300
Prefetching

Strategy

gmail

High Speed Connection

Dial-Up Connection

Prefetching

Strategy

Figure 6. Average latency per sound using different prefetching strategies. The first set contains
tasks performed by participants in our user evaluation, including results for prefetching strategies
that are based on user behavior. The second set contains five popular sites, read straight through
from top to bottom, with and without DFS prefetching. (Note the different scales.)

that should be isolated based on the same-origin policy orig-
inates from a different domain. This is done by prepending
the original domain of a resource onto its existing domain.
For instance, content from yahoo.com is made to originate
from yahoo.com.wadomain.org. WebAnywhere rewrites all
URLs in this way, causing the browser to correctly enforce
the same-origin policy for the content viewed.

All requests to open new pages and URL references
within retrieved pages are rewritten to point to the proper
domain. The web proxy server enforces that a request for
web content located on domain d must originate from the
d.wadomain.org domain. WebAnywhere is able to respond
to requests for any domain, regardless of the subdomain
supplied, through the use of a wildcard DNS record [20]
for *.wadomain.org that directs all such requests to Web-
Anywhere. The WebAnywhere script and the Flash sound
player must also originate from the the d.wadomain.org do-
main, and so they are reloaded. This 100 KB download need
only occur when users browse to a new domain.

Browser cookies also have access restrictions de-
signed to prevent unauthorized scripts from accessing
them [22]. The PHProxy web proxy used by WebAny-
where keeps track of the cookies assigned by each do-
main and only sends cookies set by a domain to that do-
main. This is not entirely sufficient. Access to cook-
ies is controlled both by the domain and path listed
when a cookie is set as determined by the web page
that sets each. Future versions of WebAnywhere will
modify the domain and the path requested by the cookie
to match its location in WebAnywhere. For exam-
ple, the URL www.domain.com/articles/index.php will ap-
pear to come from www.domain.com.wadomain.org/web-
proxy/articles/index.php using the URL rewriting supported
by the Apache web server. The domain and path of the Set-
Cookie request could be adjusted accordingly.

Others have attempted to detect malicious Javascript in
the browser client [13], but this relies on potentially mali-
cious Javascript code being isolated from code within the

282

browser. The WebAnywhere Javascript runs in the same se-
curity context as the potentially malicious code. Browser-
Shield describes a method for rewriting static web pages in
order to enforce run-time checks for security vulnerabili-
ties with Javascript scripts [23]. It is targeted at protecting
against generalized threats and is, therefore, a fairly heavy-
weight option. The same-origin policy is our main concern
because it is the security policy that we removed by intro-
ducing the web proxy. We believe the approach here could
be used more generally by web proxies in order to make
them less vulnerable to violations of the same-origin policy.

6.2. Remaining Concerns

Fixing the same-origin policy vulnerability created by
WebAnywhere was of primary importance to us, but other
concerns remain. The first is that in order to work for secure
web sites, WebAnywhere must intercept and decode secure
connections made by users of the system before forwarding
them on. When a secure request is made, the web proxy es-
tablishes a separate secure connection with both the client
and the server. The data is unencrypted on the WebAny-
where server. All accesses to WebAnywhere are made over
its SSL-enabled web server, but users still must trust that the
WebAnywhere server is secure and, therefore, may want to
avoid connecting to secure sites using the system.

The second concern that remains unresolved is the op-
portunity for sites to use phishing to misrepresent their iden-
tity, potentially tricking users into giving up personal in-
formation. Although phishing is a problem general to web
browsing, the unique design of WebAnywhere makes phish-
ing potentially more difficult to detect. A web page could
override the WebAnywhere script used to play speech and
prevent users from discovering the real origin of the web
page. For instance, as the system currently exists, a mali-
cious site could override the commands in WebAnywhere
used to speak the current URL, preventing a user from dis-
covering the real web address they are visiting. Future ver-
sions of WebAnywhere will include protections like those
in BrowserShield [23] to enforce runtime checks to ensure
the WebAnywhere functions have not been altered.

Finally, because content that has been read previously
is cached on the server, malicious users could determine
what other users have had read to them, possibly expos-
ing private information. While this problem is shared by
all proxy-based systems, WebAnywhere enables it at a finer
granularity than most other systems, which is potentially
more revealing. For instance, if a user visits a page that con-
tains their credit card number, it is likely that the system will
choose to generate a separate speech sound for their num-
ber. A malicious user could repeatedly query the system for
credit card numbers and isolate those that are retrieved most
quickly. We have partially addressed this problem by not
caching sounds that originate from secure web addresses.

7. Future Work

We plan to release WebAnywhere to everyone so that
blind web users and web developers can use it to both ac-
cess the web from anywhere they happen to be and to cre-
ate more accessible content. As users begin using the sys-
tem, we will be given the opportunity to further analyze the
effects of our caching, prefetching, and security improve-
ments at larger scales. To support these additional users, we
will modify our application to run on multiple machines.
The design of WebAnywhere is quite parallel and naturally
divides into separate components that could be hosted on
separate servers. Because our experiments with server load
demonstrated that the TTS service is currently the limiting
factor of the system we will seek to concentrate our efforts
on optimizing this component.

Participants in our initial user study of the system re-
quested several features that are offered by other screen
readers but which are currently unavailable in WebAny-
where. Many of these requests involved new keyboard
shortcuts and functionality, but several involved produc-
ing different, individualized speech sounds. Implementing
these features in a straightforward way has the potential to
reduce the efficacy of the prefetching and caching strategies
employed by the system. For instance, users requested that
the system use a voice that is more preferred by them; pop-
ular screen readers offer tens of voices form which users
can choose. Others asked for the ability to set the speech
rate to a custom level. Because using a screen reader can
be inefficient, many users speed up the rate of the speech
that is read by two times or more. Many users, however, do
not prefer this because speech can be difficult to understand
at high speeds. Both of these improvements will cause the
speech played by the system to less frequently be located
in its cache, and, therefore, the value of these features will
need to be balanced by their performance implications. We
also plan to explore the option of switching to client-side
TTS when users both have the permission to use it and it is
available. Several operating systems have native support for
TTS that WebAnywhere could leverage when permitted.

8. Conclusion

In this paper, we have presented the unique architecture
of the WebAnywhere self-voicing, web-browsing web ap-
plication. The WebAnywhere web-based, self-voicing web
browser enables blind individuals otherwise unable to af-
ford a screen reader and blind individuals on-the-go to ac-
cess the web from any computer that happens to be avail-
able. The system is designed to be available, usable and
secure on most computers with both a web browser and the
ability to play sound. Fulfilling those requirements necessi-
tated moving text-to-speech functionality to a remote server,
which resulted in latency of sound retrieval that hurt the user

283

experience. We introduced and tested caching and prefetch-
ing methods designed to improve latency and showed that
they can make the system usable even on low-bandwidth
connections. To enable the system to read arbitrary web
content, we utilized a web proxy that introduced new secu-
rity concerns. We described improvements to security that
will help ensure that security policies enforced by existing
browsers will be supported by WebAnywhere as well. Our
experiences will be useful to anyone implementing either a
self-voicing or highly-interactive web application.

8.0.1 Acknowledgements

This work has been supported by National Science Founda-
tion Grant IIS-0415273 and a Boeing Professorship. We
thank Charlie Reis, Sangyun Hahn, and T.V. Raman for
their comments and support.

References

[1] Adobe Shockwave and Flash Players:
Adoption statistics. Adobe, June 2007.
http://www.adobe.com/products/player census/.

[2] C. Anderson, P. Domingos, and D. S. Weld. Web site person-
alizers for mobile devices. In IJCAI Workshop on Intelligent
Techniques for Web Personalization (ITWP), 2001.

[3] A. Arif. Phproxy, 2007. http://whitefyre.com/poxy/.
[4] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s

every move - user activity tracking for website usability
evaluation and implicit interaction. In Proc. of the 15th Intl.
Conf. on World Wide Web (WWW ’06), pages 203–212, New
York, NY, 2006.

[5] J. C. Bertot, C. R. McClure, P. T. Jaeger, and J. Ryan. Public
libraries and the internet 2006: Study results and findings.
Technical report, Information Use Management and Policy
Institute, Florida State University, September 2006.

[6] J. Bigham, A. C. Cavender, J. T. Brudvik, J. O. Wobbrock,
and R. Ladner. WebinSitu: A comparative analysis of blind
and sighted browsing behavior. In Proc. of the 9th Intl. Conf.
on Computers and Accessibility (ASSETS ’07).

[7] J. P. Bigham, C. M. Prince, and R. E. Ladner. Webanywhere:
A Screen Reader On-the-Go. In Proc. of the Intl. Cross-
Disciplinary Conf. on Web Accessibility (W4A), 2008.

[8] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and
E. de Lara. Pagetailor: Reusable end-user customization
for the mobile web. In Proc. of the 5th Intl. Conf. on Mobile
Systems, Applications and Services (MOBISYS ’07), pages
16–29, New York, NY, USA, 2007. ACM.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and implica-
tions. In INFOCOM (1), pages 126–134, 1999.

[10] C. Chen. Fire vox: A screen reader firefox extension, 2006.
http://firevox.clcworld.net/.

[11] K. P. Coyne and J. Nielsen. Beyond alt text: Making the web
easy to use for users with disabilities, 2001.

[12] Google-AxsJAX. http://code.google.com/p/google-axsjax/.

[13] O. Hallaraker and G. Vigna. Detecting malicious javascript
code in mozilla. In Proc. of the 10th IEEE Intl. Conf. on
Engineering of Complex Computer Systems (ICECCS’05),
pages 85–94, Washington, DC, USA, 2005. IEEE Computer
Society.

[14] S. Harper, C. Goble, R. Stevens, and Y. Yesilada. Middle-
ware to expand context and preview in hypertext. In Proc. of
the 6th Intl. Conf. on Computers and accessibility (ASSETS
’04), pages 63–70, New York, NY, USA, 2004.

[15] A. W. Huang and N. Sundaresan. A semantic transcoding
system to adapt web services for users with disabilities. In
Proc. of the 4th Intl. Conf. on Assistive Technologies (AS-
SETS ’00), pages 156–163, New York, NY, USA, 2000.

[16] JAWS 8.0. Freedom Scientific, 2006.
http://www.freedomscientific.com.

[17] M. Koletsou and G. Voelker. The medusa proxy: A tool for
exploring user-perceived web performance. In Proc. of the
6th annual Web Caching Workshop, June 2001.

[18] T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring
the bounds of web latency reduction from caching and pre-
fetching. In USENIX Symposium on Internet Technologies
and Systems, 1997.

[19] I. S. MacKenzie and C. Ware. Lag as a determinant of hu-
man performance in interactive systems. In Proc. of the
INTERACT and Conf. on Human factors in computing sys-
tems (CHI ’93), pages 488–493, New York, NY, USA, 1993.
ACM Press.

[20] P. Mockapetris. RFC 1034 Domain Names - Concepts and
Facilities. Network Working Group, November, 1987.

[21] V. N. Padmanabhan and J. C. Mogul. Using predictive pre-
fetching to improve world wide web latency. SIGCOMM
Comput. Commun. Rev., 26(3):22–36, 1996. ISSN 0146-
4833.

[22] J. S. Park and R. Sandhu. Secure cookies on the web. IEEE
Internet Computing, 4(4):36–44, July 2000.

[23] C. Reis, J. Dunagan, H. J. Wang, O. Dubrosky, and S. Es-
meir. Browsershield: Vulnerability-driven filtering of dy-
namic html. In Proc. of the 8th Symposium on Operating
Systems Design and Implementation (OSDI ’06), 2006.

[24] J. Ruderman. The same origin policy, 2008.
http://www.mozilla.org/projects/security/components/same-
origin.html.

[25] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition
edition, 2003.

[26] S. Schiller. Sound manager 2, 2007.
http://www.schillmania.com/projects/soundmanager2/.

[27] Serotek system access mobile. Serotek, 2007.
http://www.serotek.com/.

[28] P. A. Taylor, A. W. Black, and R. J. Caley. The architecture
of the the festival speech synthesis system. In Proc. of the
3rd Intl. Workshop on Speech Synthesis, Sydney, Australia,
November 1998.

[29] B. Thylefors, A. Negrel, R. Pararajasegaram, and K. Dadzie.
Global data on blindness. Bull. World Health Organ.,
73(1):115–121, 1995.

[30] Window-Eyes. GW Micro.
http://www.gwmicro.com/Window-Eyes/.

284

