
A framework for the Management of Context Data in
Adaptive Web Information Systems

Roberto De Virgilio and Riccardo Torlone
Università Roma Tre, Rome, Italy

{devirgilio,torlone}@dia.uniroma3.it

Abstract

Context-awareness is considered today a desirable fa-
cility of modern Web Information systems, given the large
variety of non-traditional client devices used to access such
applications. In this scenario, a fundamental requirement is
the ability to capture and manipulate, in a flexible way, di-
verse context information, such as, among many others, the
device capabilities, the preferences of the user, the network
QoS, and the location. In this paper we propose a general
framework supporting the representation and management
of a large variety of context information. To this end, we
first introduce a general data model that embeds the basic
constructs commonly used to represent context information.
We then define a number of basic primitives for the manip-
ulation of context data. We finally describe how this frame-
work can be profitably used to support different well-known
applications where context management can provide an im-
portant add-on.

1 Introduction

The increasing popularity of mobile devices, such as lap-
tops, mobile phones, and personal digital assistants is en-
abling new classes of Web applications targeting environ-
ments characterized by being dynamic, mobile, reconfig-
urable, and personalized spontaneously. These applications
and their targeted environments raise challenging problems
for developers, as they have to be aware of the variations
in the context of execution (such as the location, the time,
the users’ activities, and the devices’ capabilities) in or-
der to tune and adapt their behavior and functionality. In
this framework, it is widely recognized that the manage-
ment of context information is a fundamental requirement
to take into account effectively the limited resources of mo-
bile systems, to select data relevant to the user, to improve
the interoperability with the environment, and, in general,
to make the interaction with the system truly adaptive to

highly change scenarios of use. These “adaptive” Web in-
formation systems have to provide dynamic behavior based
on run-time interpretation of different models. This sce-
nario changes the role of context information and semantics
as compared to traditional information systems [13, 16], as
now the physical environment immediately affects and in-
teracts with the processing of data and communication. Un-
fortunately, current technologies do not fully support flexi-
ble and self-adapting models based on context. For exam-
ple, if a mobile user today wants to use the computing re-
sources of a new environment, he/she has to obtain the nec-
essary information, assess it (format, semantics) and figure
out manually how to continue his/her activities with the lo-
cal resources of that new environment. This is unaccept-
able in pervasive computing environment and neglects the
advances which have been made in other research domains
dealing with context information and semantics.

In the plethora of context representations, different mod-
els exist, often just small variation of other ones. In partic-
ular the most relevant approaches to Web Information Sys-
tems Adaptation [4, 9, 12, 14, 15] identify a context as a set
of profiles [19]. The majority of these techniques provide
specific solutions that are suited for a particular class of
predefined adaptation requirements generating rapidly the
adaptation on the basis of certain aspects of the context,
often considered a a trivial set of input values. Moreover
there is still a lack of uniformity among the different ap-
proaches, that makes most of them unusable in practice. To
this aim, in [6] we have provided a rule based technique
to Web Adaptation and in [5] we have proposed and in-
vestigated the General Profile Model (GPM), a conceptual
model for the uniform description of the various aspects of a
context, focusing on the translation of context data between
different formats. However in many application scenarios,
more powerful manipulation capabilities of context data are
needed. These includes: the integration of different (possi-
bly in conflict) context requirements coming from various
sources and the effective storage and efficient retrieval of
the context requirements to select the adaptation that best
fits them (i.e. e-commerce applications). Therefore, we

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.35

261

need an explicit representation of context information and
a rich set of operations to manipulate them. We call this
overall capability Context Management.

This paper proposes a general framework for Context
Management in Adaptive Web Applications. This frame-
work provides two main contributions. First, it argues that
modern adaptive Web applications need a support for a
broad spectrum of context data available through the net-
work. Therefore, by extending GPM, we introduce a mid-
dleware data model that serves as a formal foundation to
facilitate the representation and maintenance of heteroge-
neous context data. We claim that this simple model is gen-
eral enough to capture the vast majority of the formats of
interest. Such description permits to define different Pro-
file Models and Profile Mappings. The former describe the
primitives involved and the structure of a context model, the
latter specify the relationship between different contexts.
The other relevant contribution of the paper is an algebra
of operators to execute several manipulations of context in-
formation. The operators can be composed to support sev-
eral problems of context management. To illustrate the per-
vasiveness and scope of the framework, we provide some
examples that arise in various Web application scenarios.

The rest of the paper is organized as follows. In Sec-
tion 2, we illustrate our context modeling approach illus-
trating GPM and the notions of Profile Model and Profile
Mapping. In Section 3 we describe the algebra of operators
to manipulate context information. Finally, in Section 4 we
illustrate an implementation of the framework, in Section 5
we show several application scenarios, in Section 6 we dis-
cuss related work and in Section 7 we draw some conclu-
sions and sketch future work.

2 Context Modeling

In this section we briefly present GPM, a metamodel that
includes all constructs of other context models. Respect
to [5] we introduced new constructs, in particular to manage
constraints. Moreover, based on such description we then
illustrate the special notions of Profile Model, representing
the particular model of context data, and Profile Mapping
that describes how two contexts are related to each other
(i.e. useful to operate integrations between context data).

2.1 General Profile Model

A general profile is a description of an autonomous as-
pect of the context into which the Web site is accessed and
that should influence the structuring and presentation of its
contents [22]. Examples of profiles are descriptions of the
user, the device, the location, and so on.
GPM presents a quite limited set of constructs, that we call
basic primitives, to describe a conceptual representation of

Unordered
sequence

(uS)

Key
(K)

Choice
(ch)

External
Reference

(eR)

basic primitives

Domain
(Dm)

Ordered
sequence

(oS)

Simple
Attribute

(sA)

Complex
Attribute
(cA)

Dimension
(D)

Profile
(P)

Unordered
sequence

(uS)

Key
(K)

Choice
(ch)

External
Reference

(eR)

basic primitives

Domain
(Dm)

Ordered
sequence

(oS)

Simple
Attribute

(sA)

Complex
Attribute
(cA)

Dimension
(D)

Profile
(P)

Figure 1. GPM basic primitives

a context, as shown in Figure 1. Principal constructs are
the dimension and the attribute. A dimension is a property
that characterizes a profile. Each dimension is described
by means of a set of attributes. Attributes can be simple
or composite. A simple attribute has a domain of values
associated with it (printable values such as string, integer,
boolean and so on), whereas a composite attribute has a
set of (simple or composite) attributes associated with it.
It is possible to represent ordered and unordered sequences
of attributes and a choice of a set of attributes, whose in-
stances can be chosen among instances of the attributes (for
instance rdf:Alt of an RDF file). It is possible to distin-
guish different roles for a simple attribute: it can be a key or
an external reference to a component of a profile. The car-
dinality is expressed as a pair of integer values (Min,Max)
that corresponds to a primitive whose instances are sets of
instances of the primitive associated with it (these sets must
have a cardinality included between Min and Max).

Let us fix a vocabulary V = {D, A} where D is a set
of dimension names and A is a set of (simple and compos-
ite) attributes names. We denote by D : Y (X) a dimen-
sion schema, where D ∈ D, X = A1, . . . , An ∈ A and
Y ∈ {⊕,⊗, �}. If Y = ⊕ (⊗) then X denotes an ordered
(unordered) sequence of the attributes in X , otherwise if
Y = � then X denotes a choice on the set of attributes
in X . If Ai (1 ≤ i ≤ n) is a simple attribute, then it
is associated with a set of values (the domain), otherwise,
it has associated with Y (Ai1 , . . . , Aik

) that denotes an or-
dered (Y = ⊕), unordered (Y = ⊗) sequence or a choice
(Y = �) of (sub)attributes.

Definition 1 (Profile and context) Given a set of dimen-
sions D1, . . . , Dn over a set of attributes Ai,1 . . . Ai,ki (1 ≤
i ≤ n) respectively, a (general) profile over D1, . . . , Dn is
function that associates with each simple attribute of every
dimension a value (or a set of values) taken from its domain.
A context is a collection of profiles.

An instance of a profile results by associating with each
simple attribute of every dimension a value (or a set of
values) taken from its domain, while a schema of a pro-
file results by associating with each simple attribute of ev-
ery dimension a particular domain. Therefore, a context
schema is a set of profile schemes, and a context instance
is a set of profile instances. As an example, Figure 2 re-
ports a graphical representation for the context schema of

262

UserDevice

AccountBrowserHardware

Client A

E-mail

Display

width height

Browser

name
Login

PwdUSname

(0,1)

Location

GSMGps

latitude longitude Cell-ID country
Average
Cell

range

Average

Signal
strenght

#cellsContent
types

Video
format

II II

SS

SS SS

SS

SS SS

II II IIII SS RR RR

SizeColor

SS

Figure 2. Example of a context schema

a client A composed by profile schemes for the device, the
user and the location. The profile schema for a client device
is represented by means of the hardware and browser

dimensions. In turn, the hardware dimension can be de-
scribed by means of a composite attribute like display,
composed by another composite attribute size as an or-
dered sequence of simple attributes width and height.
We indicate the basic type associated inside the domain
(for instance I means integer, R real and S string). The
content types attribute is associated to the integer do-
main by an unordered sequence: this means that the profile
associates to the attribute a set of integer values (for instance
the rdf:Bag in a RDF file). Similarly, the video-format
attribute is associated to a choice of possible values (the
rdf:Alt in a RDF file). The user profile schema presents
the dimension account, described by a choice between the
simple attribute e-mail (so an access without a registra-
tion) or the composite attribute login, composed by the
simple attributes username and password (so an access
with a registration), and so on. The location profile schema
presents the dimension GSM to characterize location infor-
mation from the GSM cells: each cell has a unique ID, ex-
pressed by the key Cell-ID. Figure 3 reports three profile
instances for the profile schema of the device.

An important aspect of the formalism is that different
profiles (schemes or instances) can be compared making use
of a subsumption relationship �. Intuitively, given two pro-
files (schemes or instances) P1 and P2, if P1�P2 then P2

is more detailed than P1 since it includes the attributes of
P1 at the same or at greater level of detail. More precisely,
we first say that an attribute A of a profile P is covered by
an attribute A of a profile P ′ if either they are simple and
P (A) = P ′(A), or they are composite and for each sub-

P3

Video

Format

P1P1

BrowserHardware

Browser

name

Browser

P2

IE MPEG
IE

Color

Yes

display

HardwareHardware

Size

Display Browser

name

Browser

IE

width height

640 480

width height

640 480

Size

width height

640 480

Size

width height

640 480

width height

640 480

Browser

name

Figure 3. An example of subsumption be-
tween profile instances

attribute Ai of A in P there is a sub-attribute Aj of A in P ′

such that Ai is covered by Aj . The subsumption relation-
ship is then defined as follows.

Definition 2 (Subsumption of Profiles) Given two pro-
files (schemes or instances) P1 and P2, we say that P1 is
subsumed by P2, P1�P2, if for each dimension D of P1

there is a dimension D′ of P2 such that for each attribute A
of D there is an attribute A′ of D′ that covers A.

As an example, given the profile instances reported in Fig-
ure 3, we have that P3�P2�P1.
It is easy to show that � is a partial order relationship over
profiles, as it is reflexive, antisymmetric and transitive.

2.2 Profile Models

Through our formalism, we want to describe the model
of a profile by means of the constructs involved and how

263

these constructs are composed. Since a profile is princi-
pally structured in terms of dimensions and attributes, the
respective model has to describe how a dimension is com-
posed in attributes both by means of minimum and max-
imum cardinality and by the level of composition. Itera-
tively we consider the other possible compositions such as
simple attributes in different domains, sequences of compo-
nents and so on. To this aim we first introduce the notion of
weight function. Given two basic constructs a and b of GPM
the weight ω(a, b) returns {c : (min, max)}, where c is the
level of composition of b with respect to a and (min, max)
the minimum and maximum cardinality of b with respect to
a in each level of composition . The function ω(a, b) returns
the null value ∅ if there is no composition. In a weight, ad-
missible values for c are positive integer in the range [1, n]
(n if infinite), and the cardinalities (min and max) are in
[0, n]. It is possible to establish an ordering between two
weights ω1(a, b) = c1 : (min1, max1) and ω2(a, b) = c2 :
(min2, max2) such that ω1(a, b) ≤ ω2(a, b) if c1 ≤ c2 and
min1(max1) ⊆ min2(max2), where it is 1 ⊂ 0 ⊂ n. A
Profile Model is then defined as follows.

Definition 3 (Profile Model) We consider a Profile Model
PM as a couple 〈L, ω〉 where L is the set of basic con-
structs of our GPM involved in the Profile Model, such as {
�, �,©, . . . }, and ω a weight function.

For instance, Figure 4 shows the graphical representation of
a Profile Model PM1. The set L contains the basic prim-
itives involved, and the weights assigned by ω are repre-
sented in a matrix. In PM1 each dimension can be com-
posed by simple attributes of string or integer values, or
by composite attributes. Each composite attribute can be
composed by simple attributes of string or integer values or,
recursively, by composite attributes of the same type. The
function ω assign to each couple of primitives the weight
c : (1, n). Each component is composed by n other compo-
nents (at least 1) along c levels. For instance ω(cA, cA) says
that a composite attribute is composed by other ones (along
n levels, so infinitive times). For instance PM1 describes
the profile schema of device of Figure 2.
As for profiles, we can define the subsumption relationship
� between Profiles Models.

Definition 4 (Subsumption of Profile Models) Given two
Profile Models PM1 = 〈L1, ω1〉 and PM2 = 〈L2, ω2〉,
we say that PM1 is subsumed by PM2, PM1 � PM2, if
L1 ⊆ L2 and for each (a, b) ∈ L1 then ω1(a, b) ≤ ω2(a, b)

As an example, given the Profile Models reported in Fig-
ure 4, we have that PM2�PM1.

2.3 Profile Mappings

Given two profile schemes PS1 and PS2, a morphism
over PS1 and PS2 is a binary relation over the components

PM1 = < {P,D,cA,sA,Dm(S), Dm(I)} , ω
1

>

PM2 = < {P,D,cA,sA,Dm(I)} , ω
2

>

∅

∅

1:(1,1)

∅

∅

∅

∅∅∅∅∅

∅∅∅∅∅

1:(1,1)∅∅∅∅

∅1:(1,n)n:(1,n)∅∅

∅1:(1,n)1:(1,n)∅∅

∅∅∅1:(1,n)∅

ω

∅

∅

1:(1,1)

∅

∅

∅

∅∅∅∅∅

∅∅∅∅∅

1:(1,1)∅∅∅∅

∅1:(1,n)n:(1,n)∅∅

∅1:(1,n)1:(1,n)∅∅

∅∅∅1:(1,n)∅

ω

II

SS

IISS

∅

1:(1,1)

∅

∅

∅

∅∅∅∅

∅∅∅∅

1:(1,n)∅∅∅

1:(1,n)1:(1,n)∅∅

∅∅1:(1,n)∅

ω

∅

1:(1,1)

∅

∅

∅

∅∅∅∅

∅∅∅∅

1:(1,n)∅∅∅

1:(1,n)1:(1,n)∅∅

∅∅1:(1,n)∅

ω

II

II

Figure 4. An example of Profile Models

(dimension or attribute) of the two profile schemes. More
precisely, we define a morphism as follows

Definition 5 (Morphism of profiles) Given two profile
schemes PS1 and PS2, a morphism M is a set of pairs
(s,t) where s is a component (dimension or attribute) of
PS1 and t is a component of PS2.

We use the traditional notion of morphism [1] such as
to define a set of correspondences between two profile
schemes. Given a morphism M between two profile
schemes PS1 and PS2, for each pair (s,t) of M we de-
fine a pair (PS

[s]
1 , PS

[t]
2) where PS

[s]
1 is the profile schema

representing the path from the root of PS1 to the compo-
nent s (of PS1) and PS

[t]
2 is the profile schema represent-

ing the path from the root of PS2 to the component t (of
PS2). Through particular combinational functions, we de-
fine a Profile Mapping as

Definition 6 (Profile Mapping) Given two profile schemes
PS1 and PS2, a morphism M between PS1 and PS2 and
a set of combinational functions F, a mapping M is a set
of pairs 〈[(PS

[s1]
1 , PS

[t]
2), (PS

[s2]
1 , PS

[t]
2), . . .],F〉, where

(PS
[si]
1 , PS

[t]
2) is from each (si, t) in M and F is a func-

tion of F such that P
[t]
2 = F(P [s1]

1 , P
[s2]
1 , . . .).

264

PS
1

Hardware

Display

HW

PS
2

M = {(Width,DisplaySize),

(Height,DisplaySize)}

M = {([(PS1
[Width], PS2

[DisplaySize]),

(PS1
[Height],PS2

[DisplaySize])],

Concatenate)}

P
1

Hardware

Display

Width

200

Height

240

240x200

Display
Size

HW

P
2

width height

II II

SS

Display
Size

Figure 5. An example of Profile Mapping

Instead of representing the relationship as a set of pairs
(of components), a Profile Mapping represents a set of ob-
jects (each of which can relate components in the pro-
file schemes). This reification is often needed for satis-
factory expressiveness. It allows us to attach custom se-
mantics to a mapping. We can do this by having a com-
binational function for each object m in a Profile Map-
ping, which is an expression whose variables include the
objects that m directly or indirectly references in PS1

and PS2. For example, in Figure 5 we could associate
an expression with the morphism {(Height,DisplaySize),
(Width,DisplaySize)} that says DisplaySize equals the con-

catenation of Width and Height, so P
[DisplaySize]
2 =

Concatenate(P [Width]
1 , P

[Height]
1).

3 Context Management Algebra

We can define an algebra of operators to execute manip-
ulations on profiles (schemes or instances), Profile Models
and Profile Mappings.

3.1 Meet (
)

Intuitively, given two profiles P1 and P2, the meet (
)
represents the greatest profile including the information in
common between P1 and P2. The meet (
) of two Pro-
file Models PM1 and PM2 represents the greatest Profile
Model that is able to generate the productions (profiles) in
common between PM1 and PM2.

Definition 7 (Meet of Profiles) The meet of two profiles
P1 and P2, denoted by P1
P2, is a profile P such that,
P�P1, P�P2 and, for each profile P ′ �= P such that
P ′�P1, P ′�P2, it is the case that P ′�P .

Definition 8 (Meet of Profile Models) Given two Profile
Models PM1 = 〈L1, ω1〉 and PM2 = 〈L2, ω2〉, the meet

of PM1 and PM2, denoted by PM1
 PM2, is a Profile
Model PM = 〈L, ω〉 where L = L1 ∩ L2 and for each
(a, b) ∈ L, ω(a, b) = min{ω1(a, b), ω2(a, b)} (otherwise
∅, if ω1(a, b) or ω2(a, b) is ∅)

3.2 Join (�)

Given two profiles P1 and P2, the join (�) represents the
least profile including all the information of both P1 and
P2. The join (�) of two Profile Models PM1 and PM2

represents the least Profile Model that is able to generate all
the productions (profiles) of PM1 and PM2.

Definition 9 (Join of Profiles) The join of two profiles P1

and P2, denoted by P1�P2, is a profile P such that, P1�P ,
P2�P and, for each profile P ′ �= P such that P1�P ′,
P2�P ′, it is the case that P�P ′.

Definition 10 (Join of Profile Models) Given two Profile
Models PM1 = 〈L1, ω1〉 and PM2 = 〈L2, ω2〉, the join
of PM1 and PM2, denoted by PM1 � PM2, is a Profile
Model PM = 〈L, ω〉 where L = L1 ∪ L2 and for each
(a, b) ∈ L, ω(a, b) = max{ω1(a, b), ω2(a, b)} (otherwise
ω1(a, b) if ω2(a, b) = ∅, or ω2(a, b) viceversa)

3.3 Difference (−)

Given two profiles P1 and P2, the difference (−) rep-
resents the greatest profile including the information of P1

not in common with P2. The difference (−) of two Pro-
file Models PM1 and PM2 represents the greatest Profile
Model that is able to generate the productions (profiles) of
PM1 not in common with PM2.

Definition 11 (Difference of Profiles) The difference of
two profiles P1 and P2, denoted by P1 − P2, is a profile
P such that, P�P1, P
(P1
P2) = ∅ and, for each profile
P ′ �= P such that P ′�P1, it is the case that P ′�P .

265

PS
1

Account

Pass

Word

SS

User

Name

SS

E-mail

II

Mail

II

ID

SS

Login

(1,n)

PS
2

Account

Login

(1,n)

P
1

Account

Login

Pass

Word

User

Name
E-mail

UN1 PW1 em1@cx.com

Login

Pass

Word

User

Name
E-mail

UN2 PW2 em2@cx.com

P
2

Account

Login

ID Mail

UN1:PW1

em1@cx.com

Login

ID Mail

UN2:PW2

schema instance

M

P
2

Account

Login

ID Mail

UN1:PW1 UN2:PW2

Login Login

ID Mail

Login

Overlapping detection
and composition

No Overlapping
detection

M

em2@cx.com em1@cx.com em2@cx.com

Figure 6. An example of overlapping and composition

Definition 12 (Difference of Profile Models) Given two
Profile Models PM1 = 〈L1, ω1〉 and PM2 = 〈L2, ω2〉, the
difference of PM1 and PM2, denoted by PM1 − PM2, is
a Profile Model PM = 〈L, ω〉 where if L1 − L2 �= ∅ then
L = {�, �,©} ∪ L1 − L2, L = L1 otherwise, and for
each (a, b) ∈ L, ω(a, b) = ω1(a, b).

3.4 Distance (δ)

To compare the similarity between profiles, we propose
the following metric distance.

Definition 13 (Distance between profiles) The distance
(δ) between two profiles P1 and P2, denoted by δ(P1, P2),
is defined as follows: δ(P1, P2) = 1 − |P1�P2|

max{|P1|,|P2|} ,
where |P | denotes the number of edges of a profile P .

It is easy to show that δ(P1, P2) is a metric. If the struc-
ture similarity of P1 and P2 is large, the distance between
them is small, and vice versa. For instance, in Figure 2 the
distance between P1 and P2 is 0.53.

The comparison between two Profile Models can be
measured by the following idea of distance.

Definition 14 (Distance between Profile Models) Given
two Profile Models PM1 = 〈L1, ω1〉 and PM2 = 〈L2, ω2〉,
the distance of PM1 from PM2, δ(PM1, PM2), is given

by |L1 − L2| + ∆ω, where ∆ω is the number of couples
(a, b) ∈ L = L1 ∩ L2 such that ω1(a, b) �= ω2(a, b).

The distance δ(PM1, PM2) measures how much the Pro-
file Model PM1 can’t interpret the Profile Model PM2. In
other words, this distance evaluates how many primitives
and combinations of them in PM2 are not comprehensible
by PM1. For instance, in the Figure 4 the distance of PM2

from PM1, δ(PM2, PM1), is 1. PM2 can’t interpret the
composition of composite attributes in other ones.

3.5 Overlapping (�)

An important task is the detection of overlapping ele-
ments in a Profile Mapping, which would generate redun-
dancies and inconsistencies at instance level.

Definition 15 (Overlapping) Given two profiles PS1 and
PS2, a mapping M between PS1 and PS2, and two pairs
of M

• m1 = 〈[(PS
[s1]
1 , PS

[t1]
2), (PS

[s2]
1 , PS

[t1]
2), . . .],F1〉,

• m2 = 〈[(PS
[s′

1]
1 , PS

[t2]
2), (PS

[s′
2]

1 , PS
[t2]
2), . . .],F2〉,

there is an overlapping in M between m1 and m2, denoted

by m1 � m2, if PS
[t1]
2
PS

[t2]
2 �= ∅ and ∃PS

[si]
1 , PS

[s′
i]

1

such that PS
[si]
1
PS

[s′
i]

1 �= ∅.

266

Profile Splitter

Context
information

Profile Model
Definer

UI

Profile
Mappings

Morphisms

Profile
Schemes

Profile
Instances

Context Operators UI

Vocabulary

Profile Mapping
Definer

UI

Profile
Models

Figure 7. Tool for Context Management

3.6 Composition (�)

We can compose pairs of a Profile Mapping. The com-
position is defined as follows

Definition 16 (Composition) Given a mapping M and two
pairs of M

• m1 = 〈[(PS
[s1]
1 , PS

[t1]
2), (PS

[s2]
1 , PS

[t1]
2), . . .],F1〉,

• m2 = 〈[(PS
[s′

1]
1 , PS

[t2]
2), (PS

[s′
2]

1 , PS
[t2]
2), . . .],F2〉

the composition m of m1 and m2,
denoted by m1 � m2, is the pair

〈[(PS
[s1]
1 , PS

[t1]
2), (PS

[s2]
1 , PS

[t1]
2), . . . , (PS

[s′
1]

1 , PS
[t2]
2),

(PS
[s′

2]
1 , PS

[t2]
2), . . .],F1�F2〉, where F1�F2 means that

P
[t1]
2 = F1(PS

[s1]
1 , PS

[s2]
1 , . . . ,F2(PS

[s′
1]

1 , PS
[s′

2]
1 , . . .)).

Intuitively we compose the single instances that each
pair should produce. In particular cases, the compo-
sition is driven by the detection of overlapping ele-
ments in a mapping. Let’s consider Figure 6; we want
to map the concatenation of UserName and PassWord

with ID and to copy the E-mail into Mail from
the profile schema PS1 to PS2. From the mor-
phism M = {(UserName, ID), (PassWord, ID), (E −
mail, Mail)}, let’s consider a mapping M as {m1 =
([(PS

[UserName]
1 , PS

[ID]
2), (PS

[PassWord]
1 , PS

[ID]
2)],

concatenate), m2 = ([PS
[E−mail]
1 , PS

[Mail]
2], copy)}. In

the mapping there is an overlapping between m1 and m2.
Figure 6 illustrates the resulting profile instance P2 both
with overlapping detection and composition and without
overlapping detection. This example demonstrates the in-
efficiency of the mapping if the overlapping is not detected.

4 Implementation

We have designed a tool for Context Management, by
extending the one presented in [5]. It supports the manage-
ment of multiple context models and mappings. Given its
flexibility, extensibility and expressivity power, we imple-
ment instances and schemes in RDF and RDF(S) respec-
tively. The architecture of the tool is shown in Figure 7.
The main operations offered by the tool are the following:

• To split an incoming context into autonomous profiles.
This task is supported by the Profile Splitter that cap-
tures a context and produces different profiles respect
to the different coordinates, fixed in advance (i.e de-
vice capabilities, user preferences and network char-
acteristics). This module implements schemes and in-
stances in RDF(S) and RDF, making use of the Jena
framework (http://jena.sourceforge.net/).

• The definition of Profile Models, supported by the Pro-
file Model Definer. The designer chooses the appropri-
ate set of constructs for a context model and sets an
appropriate weight function ω.

• The definition of Profile Mappings, supported by the
Profile Mapping Definer. Respect to the incoming
Profile schemes (PSi) and a Vocabulary containing
the terms for target Profile schemes (PSj) used by
the adaptive application, the designer defines the Mor-
phisms between PSi and PSj and the relative Profile
Mappings.

• The application of different operators, available from
our algebra, to profile schemes and instances. This
task is supported by the Context Operators module that

267

Figure 8. A snapshot of the application

takes as input the profile schemes and instances result-
ing by the Splitter and applies the chosen operator, in-
volving Profile Models or Profile Mappings in case.

All modules of this tool present a User Interface to support
the designer to perform models and mappings and apply the
available operators for context management. For instance,
Figure 8 shows a snapshot of the tool, where the user is
defining a Profile Mapping between two Profile Schemes.

5 Application Scenarios

Usually, context-aware applications are characterized
by heterogeneous structural models that are analyzed and
matched either manually or semi-automatically at design
time. In such applications context management is an im-
portant prerequisite. Let’s consider the common scenario
depicted in Figure 9. Typically, different sources (hetero-
geneous in case [19]) send several context information to
be captured and interpreted. This first step is called Con-
text Management. The resulting set of autonomous profiles
is taken as input by the Adaptation step that generates the
adaptation that best fits the context requirements. Finally
in the Content Delivery step the generated adaptation is ap-
plied to the content to produce the final response. In this
scenario the Context Management is a crucial step. In this
section we present some well-known applications where our
framework can provide an important add-on for Context

Management. There are context engineering and context
information integration, including schema and data integra-
tion, and an emerged new application, mobile devices com-
munication.

5.1 Context engineering

In this scenario Web applications are confronted with
heterogeneous contexts. This activity requires support of
context management because context engineering has to
deal with multiple, distributed and evolving contexts. In
particular we refer to context translation, context data ex-
change and context evolution and versioning.

Translation of Contexts. Given a source profile PIs of a
profile schema PSs, described according to a Profile Model
PM1, we need to generate a target profile PIt of a target
profile schema PSt described according to a Profile Model
PM2 , containing the same information as PIs. Now we
can express a translation using our framework. Let’s con-
sider an operation (Γ) that takes as input a profile (schema
or instance) P1 according to a Profile Model PM1 and re-
turns a profile (schema or instance) P2 according to a Pro-
file Model PM2 containing the same information of P1,
denoting by ΓPM1→PM2(P1) = P2. Γ represents an ele-
mentary translation of a profile (schema or instance) from
a representation into another. For instance the Figure 10
represents a translation of a profile schema from a Profile

268

Content
Delivery

Response

Contents

Context
Management

HTTP headers

CC/PP

CSCP

Adaptation

Figure 9. A scenario of reference

Model that articulates the schema on n levels, making use
of composite attributes, into a Profile Model that articu-
lates the schema on 2 levels, making only use of simple
attributes (and external references) and no composite ones.
Let’s consider a prefixed set of Γ operations representing
atomic translations, for instance of some primitives. In-
tuitively given an elementary operation ΓPMi→PMj , if we
apply it to a profile (schema or instance) P described by
a Profile Model PM such that PMi�PM then the opera-
tion will translate the part P ′ of P described by PMi into
P ′′ described by PMj . The resulting profile will be de-
scribed by a Profile Model such as (PM − PMi)�PMj .
So we can denote also the following ΓPM1→PM2(PM) =

(PM − PM1)�PM2. Therefore, we perform a translation
from PM1 into PM2 by means a sequence of operations
� = {ΓPMi→PMj , ΓPMn→PMm,...} such that the distance
between PM2 and the resulting Profile Model �(PM1) is
zero.

PS
1

Hardware

Display

21)(
21

PSPSPMPM =Γ →

PS
2

Hardware Display

width height

oidoidoid

II II

II IIwidth height

II II

Figure 10. An example of Γ operation

Context data Exchange Given two profile schemes PS1

and PS2, described by the same Profile Model PM , we

want to generate a profile instance PI2 according to PS2

from PI1 according to PS1 such that PI2 contains the
same information of PI1. Let’s consider an operation Map,
denoted by (µ), that takes PS1 and PS2 as input and re-
turns a Profile Mapping M between them, such as M =
µ(PS1, PS2). This operation is supported of a prefixed
set of combinational functions to combine the morphisms
between the input schemes. In some cases, the definition
is quite simple. For example, the equality of two objects
may be based on equality of their identifiers or names or us-
ing technology from a variety of fields (graph isomorphism,
natural processing language, domain-specific thesauri, ma-
chine learning, data mining, etc...). Also the choice of the
expression to combine components (such as a concatena-
tion) can be automatically computed. In other cases, it is
quite complex and perhaps subjective. In practice, the Map
could be not an algorithm that returns a mapping but rather
is a design environment to heal a human designer to develop
a mapping. For further details, a survey of approaches to au-
tomatic schema matching is [18]. Therefore, we make use
of µ to produce the mapping M = µ(PS1, PS2). Then we
detect and compose the overlapping elements of M by us-
ing respectively the primitives � and �. Finally we iterate
over the components of PS1 involved in M and produce
the resulting PI2 as join between the instances produced by
each couple m of M. We denote PI2 = τ(M, P I1, PS2).
We extensively studied the translation and context data ex-
change problems in [5]. However here we have revisited
them by using the algebra discussed in the previous section.

Context evolution and versioning It is natural that appli-
cation requirements and the way in which context informa-
tion are engineered dynamically evolve over time. Multiple

269

CxSs

CxIs

CxSt

CxIttranslation

mapping

τ

Figure 11. Context evolution and versioning

versions of the same context often exist. Some applications
keep their context up to date, while others may continue
to use old context versions and update them on their own.
These situations arise because Web engineers and develop-
ers usually do not have a global view of how and where
the contexts have changed. The context management is to
help here. It mainly focuses on discovering differences (i.e.
what dimensions have been added, deleted or renamed) be-
tween two context versions. As shown in Figure 11, in this
scenario it is useful (i) to produce a mapping M between
the old version (CxSs) and the new version (CxSt) of the
context, (ii) generate a transformation τ by using M, and
(iii) translate the underlying context data instances (CxIs

in CxIt). This problem is comparable with the alignment
of different versions of the same ontology [17].

5.2 Context Information Integration

Information integration is one of the oldest classes of
applications. Under the information integration we gather
problems as schema and data integration [10]. We face
this problem in our scenario, where context management
is a plausible solution. The problem is to create a profile
instance PI3, with a schema PS3, that represents all the
information expressed in two given profile instances PI1

and PI2, having respectively schemes PS1 and PS2. As
shown in Figure 12, there are three main activities: (i)
create the Profile Mappings M1 between PS1 and PS3

and M2 between PS2 and PS3 and generate the instances
PI ′1 and PI ′2, resulting by applying the mappings M1 and
M2 respectively to PI1 and PI2, (ii) resolving conflicts
(i.e., where the same information was represented differ-
ently in PI ′1 and PI ′2) and (iii) generate PI3 from PI ′1
and PI ′2. We can express these activities using our frame-
work as follows. We return M1 = µ(PS1, PS3) and M2 =
µ(PS2, PS3); then we generate PI ′1 = τ(M1, P I1, PS3)
and PI ′2 = τ(M2, P I2, PS3). Since PS3 has a vocab-
ulary V = {D, A}, a conflict arises if the same simple
attribute Ai ∈ A has different values in PI ′1 and PI ′2;
in this case we can assume each profile having a priority
and for example in this case we fix PI ′1 with the major

PS1

PI1

PS3

PI3

τ

PS2

PI2

PI’1

mapping mapping

τ

PI’2

∏

Figure 12. Context integration

priority. So for each simple attribute Ai ∈ A such that
PI ′1(Ai) �= PI ′2(Ai), with PI ′1(Ai) and PI ′2(Ai) not null,
then PI ′2(Ai) = PI ′1(Ai). Finally we generate PI3 as join
between PI ′1 and PI ′2 such as PI3 = PI ′1�PI ′2.

5.3 Mobile devices communication

Applications running on mobile devices take advantage
of a context management framework for providing services
to users. Let’s regard to ambient computing. The appli-
cations must always keep track of changes (i.e. user lo-
cations). Characterizing the context in ambient computing
goes through finding information about the current situa-
tion in the environment by using various devices available
in that environment (e.g. sensors). Similar to Web services
descriptions, context information will provide descriptions
of the devices, such as a temperature service, and the way
to interact with them. Let’s consider temporal management
of RFID data [23]. RFID data are dependent by time and
dynamically change. RFID data management systems have
to achieve large scale temporal data created by RFID ap-
plications. These applications need to have an expressive
data model to structure incoming context information from
different sources, an automatic data acquisition (i.e. filter-
ing) and transformation, and adaptable and portable logic.
Moreover, given the large scale of data, RFID applications
has to reduce the cost of managing RFID data, for instance
using clustering techniques. To this aim our framework in-
troduces a suitable cluster based solution. Given a set of
contexts CX = {Cx1, . . . , Cxn}, we want to classify them
in a set of clusters C = {C1, . . . , Cn} that share common
characteristics. By using our framework, we define a Pro-
file Cluster as a tree {NC, EC , rC} where (i) NC is a set of
nodes representing profiles, (ii) EC is a set of edges (ni, nj)
such that ni�nj , and (iii) rC is the root. In a cluster a pro-
file P1 is parent of a profile P2 if P1�P2, therefore the root

270

represents the most general profile in the cluster. Moreover
let’s consider a set of profiles P = {P1, . . . , Pn}, and an
operation P-CLS (�) that classifies P in a set of Profile Clus-
ters �(P) = C = {C1, . . . , Cn}. Principally P-CLS makes
use of the primitives � and δ. So from CX we produce
several sets of profiles as Pi = {Pi,1, . . . , Pi,n} grouping
respect the same type of coordinate i (device capabilities,
user preferences, network characteristics, . . .). Therefore,
we generate for each Pi a set of clusters by applying the �

operator (i.e Ci=�(Pi)).
Referring to Adaptive Web applications, a relevant prob-

lem is the definition of effective methodologies for choosing
efficiently the most suitable adaptation for a given context.
To this aim, we need to classify contexts on the basis of their
characteristics. At a logical level, each class corresponds to
contexts that require similar adaptations. Also in this case
our framework is a valid support. We extensively studied
this problem in [7].

6 Related work

Modeling context information based on formal descrip-
tions is a core aspect of adaptive Web applications [6]. Be-
ing context information the condition to activate an adap-
tation process, in this paper we have focused on manage-
ment of context data in Adaptive Web-based Information
Systems. A number of approaches and methodologies for
modeling context information have been proposed in the
last years, testifying the relevance of the task. Theodor-
akis et al. [20] present a model for representing contexts
in information bases along with a set of operations for ma-
nipulating contexts. These operations support creating, up-
dating,combining and comparing contexts. Contexts are a
special kind of objects that represent real world divisions
or environments. In [8] the authors consider a context as
a set of user profiles, and organize them using a concept
of dimension (similar as in our approach). The dimension
is used to organize the data of a profile in totally ordered
sets. Henricksen et al. [11] focus on the problems associ-
ated with previous context models, including their lack of
formality and generality. They individuate principal char-
acteristics of context information (temporal aspects, incor-
rectness, inconsistency, incompleteness, . . .) and propose
an object-oriented approach (entity-object and associations)
to manage it. In [21] the authors distinguish different con-
text scenarios (oriented to customer’s usage), a context-free
expression with a set of parameters and operations of copy
and filtering. Principally the approach is oriented to in-
crease the customers’ usage comfort. In [2] the authors pro-
pose a rule-based mechanism, supported by first order logic,
that allows the modification of the context (modeled as a set
of attribute/value pairs) to solve conflicts in the adaptation
requirements. Finally Cappiello et al. [3] provide a frame-

work to define and manage the context. The approach, using
ontology and OWL, illustrates a top ontology as container
of the general concepts defined independently of a domain
of application and that could be used in different application
domains. Principally context information are in user pref-
erences, geographical position and channel capabilities. All
of these approaches concern with the development of a con-
text management infrastructure, considered a relevant is-
sue. However, we believe that in general the majority of the
above mentioned approaches present a common lack of for-
mality and generality. They provide specific solutions that
are suited for a particular class of predefined context infor-
mation (i.e. commonly device characteristics and user pref-
erences). The management of context data often is reduced
to operations of copy and filtering. That is why we have ad-
dressed in this paper the problem from a generic perspective
aimed at facilitating a uniform and generic solution. Our
approach gets inspiration from the data management frame-
work of Bernstein [1]. The motivations and goals are simi-
lar but the scenario of reference is quite different. Bernstein
proposes a framework to manage all existing models of data
in several research areas. Our approach focuses on the man-
agement of context data in adaptive Web applications, that
is a scenario where the framework of Bernstein would be
an instrument too complex and overmuch, with consequent
loss of efficiency and effectiveness.

7 Conclusions and Future Work

In this paper, we described a new approach to manipu-
lating context information. We proposed a data model that
consists of a general abstraction of existing formats that al-
lows to define different context models and mappings. The
data model is enriched by an algebra of operators to embed
the main functionalities of context management. We be-
lieve that this framework is an important support in differ-
ent application scenarios such as contexts translation, con-
texts integration or contexts classification by means of the
operators embedded. In addition to implementation, there
are many other areas where work is needed to fully realize
the potential of this approach. Some of the more pressing
ones are (i) extending the set of basic primitives to capture a
major number of formats, (ii) more detailed semantics and
consequently extension of the algebra of operators, and (iii)
trying to apply context management to especially challeng-
ing problems, to identify limits to the approach and oppor-
tunities to extend it.

References

[1] P. A. Bernstein. Applying model management to clas-
sical meta data problems. In Proc. of the 1th Bien-

271

nial Conference on Innovative Data Systems Research
(CIDR’03), CA, USA, 2003.

[2] C. Bettini and D. Riboni. Profile Aggregation and Pol-
icy Evaluation for Adaptive Internet Services. In Proc.
of the 1th Int. Conference on Mobile and Ubiquitous Sys-
tems (MobiQuitous’04), Cambridge, MA, USA, 2004.

[3] C. Cappiello, M. Comuzzi, E. Mussi and B. Pernici.
Context Management for Adaptive Information Systems.
In Electr. N. Theor. Comput. Sci. 146(1): 69-84, 2006.

[4] S. Ceri, F. Daniel, V. Demaldé, and F. M. Facca (2005).
An approach to user-behavior-aware Web applications.
In proc. of 5th International Conference on Web Engi-
neering (ICWE’05).

[5] R. De Virgilio and R. Torlone. Modeling Heteroge-
neous Context Information in Adaptive Web Based Ap-
plications. In Proc. of 6th Int. Conference on Web Engi-
neering (ICWE’06), Palo Alto, California, USA, 2006.

[6] R. De Virgilio, R. Torlone and G. J. Houben. Rule based
Adaptation of Web Information Systems. In World Wide
Web Journal 10(4): 443-470, 2007.

[7] R. De Virgilio, R. Torlone, D. Valeriano, D. Di Fed-
erico. A Cluster-based Approach to Web Adaptation in
Context-Aware Applications. In International Journal of
Web Engineering 6(4): 360-388, 2007.

[8] T. Feyer, O. Kao, K. D. Schewe and B. Thalheim. De-
sign of Data-Intensive Web-Based Information Services.
In Proc. of the 1th Int. Conference on Web Information
Systems Engineering (WISE’00), Hong Kong, 2000.

[9] F. Frasincar, G. J. Houben, and R. Vdovjak (2002).
Specification Framework for Engineering Adaptive Web
Applications. In Proc. of 11th Int. Conference on World
Wide Web (WWW’02).

[10] A. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper,
J. Pollock, A. Rosenthal and V. Sikka. Enterprise in-
formation integration: successes. challenges and contro-
versies. In Proc. of the 24th International Conference
on Management of Data (SIGMOD’05), Baltimore, USA,
2005.

[11] K. Henricksen, J. Indulska and A. Rakotonirainy.
Modeling Context Information in Pervasive Computing
Systems. In Proc. of the 1th Int. Conference on Perva-
sive Computing (PERVASIVE’02), Zurich, 2002.

[12] G. Kappel, W. Retschitzegger and W. Schwinger
(2001). Modeling Ubiquitous Web Applications: The
WUML approach. In Int. Workshop on Data Semantics
in Web Information Systems (DASWIS01).

[13] R. Kaschek, K. D. Schewe and B. Thalheim. Integrat-
ing Context in Modelling for Web Information Systems.
In WES Vol. 3095, pp. 77-88, 2003.

[14] N. Koch. An object-oriented hypermedia reference
model formally specified in UML. In Information mod-
eling for internet applications, pages 59-78, IGI Publish-
ing, 2003.

[15] N. Koch and M. Wirsing. The Munich Reference
Model for Adaptive Hypermedia Applications Source.
In Proc. of the 2th International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH’04),
Malaga, Spain, 2002.

[16] R. Pitrik. An Integrated View on the Viewing Abstrac-
tion: Contexts and Perspectives in Software Develep-
ment, AI, and Databases. In J. of Systems Integration,
5(1):23-60, 1995.

[17] N. Noy and M. Musen. Ontology versioning in an
ontology management framework. In IEEE Intelligent
Systems, 19(4): 6-13, 2004.

[18] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. VLDB J. 10(4):334–350,
2001.

[19] T. Strang and C. Linnhoff-popien. A context modeling
survey. In Proc. of the 1th Int. Workshop on Advanced
Context Modelling, Reasoning and Management, Eng-
land, 2004.

[20] M. Theodorakis, A. Analyti, P. Constantopoulos and
N. Spyratos. Context in Information Bases. In Proc.
of the 3th Int. Conference on Cooperative Information
Systems (CoopIS’98), New York, USA, 1998.

[21] A. B. Zdanowicz, R. Kaschek, K. D. Schewe and B.
Thalheim. Context-aware Web Information Systems. In
Proc. of the 1th Asian-Pacific conference on Conceptual
modelling, Dunedin, New Zealand, 2004.

[22] W3C. Device independence principles.
http://www.w3.org/TR/di-princ/ (2003)

[23] F. Wang and P. Liu. Temporal management of RFID
Data. In Proc. of the 31th International Conference on
Very Large Database (VLDB’05), Trondheim, Norway,
2005.

272

