
Business Process -based Conceptual Design of Rich Internet Applications

Marco Brambilla1, Juan Carlos Preciado2, Marino Linaje2, Fernando Sanchez-Figueroa2
1Politecnico di Milano. Dipartimento di Elettronica e Informazione. Milano (Italy)

2Escuela Politécnica. Universidad de Extremadura. Cáceres (Spain)
mbrambil@elet.polimi.it; {jcpreciado; mlinaje; fernando}@unex.es

Abstract

This paper presents a methodology and a mix of
conceptual models for addressing design and
development of Web applications supported by rich
interfaces. For specifying the high level design of the
user tasks, we exploit business process models. In
particular, we describe how to model the business
process, transform it into data and navigation model of
a Web application, and apply a presentation model for
obtaining a Rich Internet Application (RIA). A
standard business modeling language (BPMN) is used
for describing workflows, which are then translated to
a WebML specification of a Web application
implemented according to the Single Page Paradigm,
typical of RIAs. Finally, by integrating the RUX-
Method features, refined Rich Interface design can be
achieved.

1. Introduction

Rich Internet Applications (RIAs) are Web
applications that exploit the power of Web clients for
increasing the responsiveness and usability of the Web
user interfaces (UI), by offering functionalities similar
to the ones of desktop applications. RIAs follow the
client/server paradigm, but opposite to traditional Web
applications, RIAs are able to transfer the processing of
UI, business logic, and data management to the client,
possibly using asynchronous communications.

The relevance of RIAs is continuously increasing,
because users are becoming accustomed to good
graphical appearance, advanced interaction patterns,
and refined application behaviours on the Web. Thus,
developers are nowadays requested to provide rich
interaction on almost any Web application.

RIAs bring also great value in terms of productivity
and efficiency of navigation. This is now fundamental
because a lot of Web applications implement enterprise
management systems, intranets, and extranets, where

productivity is critical. Such systems typically
implement strict business processes that dictate the
user behaviour. Typically, this class of applications can
be designed at an abstract level in terms of business
process models. Our proposal consists of both a
methodology and a mix of conceptual models for
addressing design and development of business
process-based Web applications supported by rich
interfaces. Our contribution describes how to model
the business process specified with BPMN, transform
it into a WebML [3] specification of data and
navigation models, and apply the RUX-Method [7]
presentation model for obtaining a Rich Internet
Application (RIA).

The paper is organized as follows: Section 2
presents the basics of RIAs; Section 3 describes how to
exploit business processes in RIA design; Section 4
explains how BPMN models are transformed in
WebML and RUX models; Section 5 presents a
running case scenario; Section 6 describes the related
work; and Section 7 concludes.

2. Basic concepts of RIAs

RIAs can be implemented using different
techniques and development languages, that exploit a
plethora of frameworks (FLEX, AJAX, LASZLO,
XUL, XAML) helping the developers in sophisticated
applications. The richness in RIA extends (at client and
server side) the four main aspects of traditional Web
applications [8]:
 Data. Through RIAs, client’s memory is available to
be used by the application; persistent and volatile
content can be stored and manipulated on the client
and finally sent to the server once the whole
operation has been completed.

 Business Logic. RIAs have a different navigation
structure from Web 1.0 applications. Due to the
augmented process capability of the client, in RIA
both the client and the server can carry out complex
operations.

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.22

155

 Communication. RIAs allow both synchronous and
asynchronous communications. Distribution of data
and functionality across client and server broadens
the features of the produced events as they can
originate, be detected, notified, and processed in a
variety of ways. Pull and push communication
capabilities are available.

 Presentation. RIAs offer improved presentation and
user interactions (e.g. multimedia support and
drag&drop). They can operate as single page
applications, avoiding unnecessary refreshments of
the whole page and allowing progressive
presentation loading when needed.

3. Representing RIA modeling foundations
with BPMN

For specifying business process models, we adopt
the OMG Business Process Management Notation

(BPMN) and its companion metamodel Business
Process Definition Metamodel (BPDM). Workflows
are based on the concepts of Process, Case (a process
instance, i.e., an execution), Activity (the elementary
unit of work), Activity instance (an instantiation of an
activity within a case), Actor (a user role), Event (some
punctual situation that happens in a case), and
Constraint (logical precedence among activities and
rules enabling activities execution). Processes can be
structured using a variety of constructs: sequences of
activities; gateways implementing AND, OR, XOR
splits, respectively realizing splits into independent,
alternative and exclusive threads; gateways
implementing joins, conditional flows, and loops.

Due to the high level of abstraction of BPMN, its
notation is suitable to many purposes. The main idea of
this work is to provide an additional abstraction level
to be used over existing Web modeling approaches
(such as OO-H [5], OOHDM [11], WebML [3], UWE
[12], and others) to represent the behaviour of RIAs for
the aspects not available in traditional Web
engineering.

We exploit the BPMN specification to generate the
design of data, business logic, communication, and
presentation. We provide a special interpretation of the
BPMN models that fits the needs of RIAs and we
define a translation to the various aspects of the
application. Separation of concerns is preserved in the
separated models used for process, content, navigation,
and presentation design.

One of the issues to take into account when
creating BPMN diagrams is the level of granularity to
be applied. For our purposes, an intermediate level of
abstraction is required: activities and events specified
in the business model should be the ones that trigger

the behaviour of the business logics and of the
presentation components.

The first purpose of the BPMN models used for
RIAs is to specify the distribution of the computation
and data storage between client and server. To achieve
this goal, pools and lanes must be organized as
follows: a pool represents an actor/role of the Web
application. Each pool is composed a set of predefined
lanes that must be marked as: server, client, and
(optionally) client-server. Client and server lanes will
comprise aspects that will stand/occur just in one of the
sides (client or server respectively), while the client-
server lane may be used to represent common issues.

3.1. Data modeling

BPMN data objects can be exploited for inferring
the basic information concepts in the data model of the
application. Data distribution (client or server) and
persistence (persistent or volatile) can be described in
the BPMN: data objects can be represented inside the
client or the server lanes; while persistence is described
by the state attribute (‘P’ or ‘V’) within the data object.
Persistent data objects will be tagged with ‘P’, while
volatile data will be tagged as ‘V’. When the same
name is used by two data objects, these data objects are
considered the same (names are repeated only for
graphical convenience). If the same data object has two
different persistence properties, it can be put twice in
the diagram, with different markers.

3.2. Business Logic

BPMN allows representing the business logic by
using the control flow (arrows), connection objects,
artifacts, and properly configured lanes. Client and
Server lanes indicate those elements that will
stand/occur at one of the sides, while mixed business
logic can be specified in the Client-server lane. The
client-server lane is useful for two different scenarios:
firstly, when the application needs to perform the same
operation twice (once at client and later at server side);
secondly, on BPMN collapsed sub-processes where
their expansions involve processes both in the client
and in the server lanes.

To establish the relation between the activities and
the data we use the standard relationship proposed by
BPMN through associations. Directionality (depicted
by an arrow) added to an association shows whether
the data object is an input or an output to the activity.
Three types of association are available: an activity can
read (incoming arrow), write (outgoing arrow from
activity to data), or read/write (no arrows).

156

3.3. Communication

To represent the complex communication patterns
that may appear into RIAs, we focus in the native
communication mechanisms that these applications
provide. We must notice that in RIAs the servers are
also able to begin a conversation, by means of push
communication paradigms (obviously, the traditional
client-server pull communication is allowed too).

BPMN control flow arrows can be used to describe
communication between activities of the processes.
From a technical point of view, the only interesting
communications are the ones traversing the border
between the client and the server. The kind of
communication (push or pull) can be immediately
derived from the direction of the arrow from the origin
to the target. Control flows can be refined by a text
annotation specifying whether the transmission is
synchronous (‘S’) or asynchronous (‘A’).

Another facet of communication is related to the
information shared or transmitted between different
actors of the application. This addresses collaborative
applications. Although we are currently investigating
the use of message flows at this purpose, this issue is
out of the scope of this paper.

4. Generating the WebML+RUX models
from BPMN

 In our proposal, the information specified in the
BPMN business process is used by the WebML
model as a high level specification of the hypertext
behaviour. The design steps can be summarized as
follows: (1) design of the BPMN model; (2)
automatic generation of preliminary data model and
navigation model, which need further refinement by
the designer; (3) extraction of the abstract RUX-
Method user interface model; (4) definition of the
RUX-method concrete model; (5) implementation of
the application through automatic code generation .

If needed, the design can re-cycle on one or more
steps.

4.1. WebML Essentials

WebML (Web Modeling Language) is a suite of

models that cover the specification of the contents,
business logics, hypertexts, and of the presentation of a
Web application. The content can be modeled using E-
R diagrams, UML class diagrams, or ontologies. Upon
the same data model different hypertext models (site
views targeted to different user roles) can be defined.
A site view is a graph of pages, possibly organized into
sub-pages. Pages comprise units, i.e., components for

publishing database contents. Units are connected to
each other through links, which carry parameters and
allow the user to navigate the hypertext. WebML also
allows specifying operations implementing arbitrary
business logic (e.g., to manipulate content instances)
and Web service invocation and publishing. In this
work we exploit the approach that map business
processes to Web application models [2], that defines:
 A standard content metamodel for recording
activities, activity instances, and process cases;

 Some new hypertext primitives for describing the
workflow behaviour. Activity areas represent
hypertext fragments implementing a workflow
activity. Start link and End link declare the entry and
exit points of activity areas, update the status of the
execution and check its correctness.

 A set of automatic rules that transform BPMN
workflow models into WebML hypertexts

To manage the peculiar characteristics of RIAs,
some aspects must be changed in the existing WebML
methodology for business-process based applications.

4.2. WebML Workflow Data Model

The business process metamodel is composed by a
set of general purpose entities and relationships that are
needed for any kind of application [2], extended with
some new properties that are specific for RIAs. All this
entities and relationships are depicted in Figure 3.

The Process describes a business process type and
is associated with entity ActivityTypes that can be
executed in a process. A Case is an instance of a
Process, and is composed by the ActivityInstances
denoting the occurrences of activities in the execution.
Every ActivityInstance is associated with one
ActivityType. User and Group represent the process
actors, as individuals clustered in groups. ActivityType
is related to entity Group to denote that the users of the
group are entitled to perform that kind of activity,
while ActivityInstances are associated with individual
users that are assigned to execute them and that
actually perform them. Satus attributes store the
execution status of Case and ActivityInstances.

The additional information that is needed for
developing RIA applications is shown in underlined
bold font in Figure 1: ActivityType entity includes two
new attributes: CreationTime that specifies when an
activity instance will be created, and Visibility that
specifies when an activity will be shown. The value of
the CreationTime attribute can be ProcessStart (the
instances of the activity will be created when the case
starts) and OnExecution (the instances will be created
when it has to be executed). The value of the Visibility
attribute can be BeforeActive (the instances of the
activity will be visible to the user before or during the

157

execution of the activity), OnlyActive (the instances
will be visible to the user only when active),
AfterActive (the instances of the activity will be visible
only when active or completed), Always (the instances
of the activity are always visible). Notice that some
constraints hold between the values of the two
attributes. If Visibility is set to BeforeActive, the
CreationTime must be ProcessStart, to allow showing
the activity before its activation. The ActivityInstance
entity includes the new Visible attribute, that states
whether the activity instance is currently shown.

Figure 1. Process metadata model (RIA specific
information is in bold red font).

4.3 WebML Hypertext Model Updates

The WebML hypertext model, even if extended
with workflow-enabling capabilities, still misses some
important aspects for supporting full fledged RIAs.

The first need is multithreading in the execution of
server-side operation chains. Currently, within a
siteview, WebML allows to trigger operation chains
only by means of user clicks that can trigger only one
execution path, which may include branching points
but not execution forks. Instead, actual multithreading
must be supported now to allow execution of several
activities at the same time at server side.

Another important aspect is the granularity of the
Activity in the hypertext model. Up to now, Activity
elements in WebML can only be hypertext areas. An
activity may include one or more pages, but the
minimum granularity is of 1 page (or one operation)
per activity. Correspondingly, start and stop links can
be defined when traversing an Activity Area border.
Viceversa, RIAs implemented in a Single Page
Paradigm require activities to correspond to pieces of
content smaller than one page. Therefore, hypertext
activity must be available also at subpage level. A
single page can include several activity subpages.

Table 1. Translation of Workflow patterns

BPMN pattern WebML model
correspondence

1. Sequence

2. XOR split

3. AND join

4.4 BPMN-WebML Translation

The translation of BPMN models into WebML

hypertext and navigation models can be achieved with
the approach proposed in [2]. However, new
translation rules must be defined for supporting RIA
features. The new translation covers the new primitives
previously introduced. Table 1 presents the translation
of some of the most used business process patterns
(sequence, split, and join). For space reasons the
translation of the whole set of pattern is only available
online at [13].

The translation of elementary concepts is quite
straightforward: a pool represents the behaviour of the
system with respect to a single user (with the two lanes
Client and Server). For each pool a single siteview is
created and composed of one page (Main Page)
according to the single page application paradigm.
Both client and server activities, spread on the two
corresponding lanes, will be placed inside the single
page. An activity is represented: (i) as a subpage
marked with an “A” symbol (Activity) within the main
page, if it contains user interaction elements; or (ii) as
an operation chain, if it only contains execution logic.

Control flows are translated as a combination of
start and stop links that indicate the beginning and the
end of the activities. Events are not fully exploited in

158

the translation: only start event are currently
transformed in a special Start link that starts the first
activity of the process and also the process case. This
can then be exploited as a special event in the
presentation model.

The translation of the patterns (Table 1) covers a
subset of the large set of BPMN possible patterns (for
further details on these limitations see [2]). For
instance, all the activities of a sequence flow (1)
become mutually exclusive subpages. An activity
instance can be automatically hidden according to its
current execution status and to the value of the Visible
attribute. Thanks to the alternative element and to the
start/stop links, an activity will be started if and only if
the previous activity is completed. A split (branching
or parallel execution) can be implemented with two
possible hypertext behaviours: the first (not shown in
the table) envisions an automatic choice of activities by
the system without involving the user. In this case,
only one anchor exists in the page and a complex logic
on the link leads to the proper executions; the second
(2) allows the user to manually activate each single
activity, by clicking on the proper link. Join points are
managed based on the kind of gateway: AND joins
must check that all the parallel branches are completed
before activating the next activity, while OR or XOR
branches can just allow the user to proceed. From the
same BPMN model, different hypertexts can be
generated. For instance, if the activity must be always
visible (Visibility attribute), no alternative pages will
be used.

4.5 WebML and RUX-Method integration for
presentation specification

The WebML presentation model, as well as many
other Web models, is not able to deal with all the rich
features of RIA interfaces. Therefore, we integrate it
with the RUX-Method, a visual method that allows
model-driven design of multimedia, multimodal, multi-
device, and multi-platform UIs for RIAs. RUX-Method
is a set of multi-level user interface models with
distinct responsibilities and abstraction levels. RUX-
Method must be used over a Web model that provides
content and functionality to the Web application.
Currently, RUX-Method is being used over some well-
know Web models (e.g., WebML or UWE) and,
conceptually, can be used over other ones. The RIA UI
development process in RUX-Method has four main
stages: connection with the previously defined Web
model (called Connection Rules), definition of the
Abstract Interface, definition of the Concrete Interface,
and specification of the Final Interface, which ends in
UI code generation.

The Connection Rules are composed of a set of
transformation rules specific for the adopted Web
model. The objective of the Connection Rules is to
extract the available information in the Web model in
order to build a first version of the Abstract Interface.
In previous works with WebML, Connection Rules
have been used for extracting the information only
from the hypertext model [9]. The RIA specification
proposed in this paper requires minor enhancements in
the Connection Rules to take advantage of the new
information offered by the business process model:
 The business logic distribution (client vs. server)
must be extracted from the BPMN. Server-side
operations are supported by RUX-Method
CALLActions, while functions at the client-side can
be based on the RUX-Method OCLActions.

 The communication (both asynchronous and
synchronous) aspects can be extracted from the
BPMN flow, instead of specifying it at the RUX-
Method Concrete Interface level.

Data duration and distribution are not taken into
account by the RUX-Method, because they are directly
managed by the business logic layer. For more
information about RUX-Model Interactive Presentation
we recommend to read [7].

5. Case Study

In order to explain the design concepts described in
this document, we introduce an example based on the
Adobe Gadget Store demo Web application
(http://flexapps.macromedia.com/flex15/
flexstore/flexstore.mxml) that allows exploring and
buying products. It offers a rich interaction (e.g.,
drag&drop) and advanced presentation features (e.g.,
partial page refresh) typical of RIAs. The main page of
this application is structured in three parts (Figure 2):
on the left side (1) a product list on which filters,
searches and selections can be applied; on the right
side (2) the details of the selected product; and at the
bottom (3) the shopping cart. For space reasons, we
cannot discuss the whole application design. Figure 3
depicts only the BPMN diagram for the subprocess
called “Checkout”, that is located completely at the
client side. Three activities can be performed in
parallel or sequence (General Info, Shopping Info, and
Payment Info) and finally checkout is completed.

The data model of the application is shown in
Figure 4: the Order of the user is described by the
chosen ShipmentOptions and by its OrderLines that
contain the quantities and the product IDs. The Order
is connected to the owner User and to the Activity of
the workflow that manipulates it.

159

Figure 2. Gadget Store case study application.

Figure 3. Detailed diagram of the “Checkout” BP.

Figure 4. Client-side data model of shopping cart.

After the business process and the data model

specification, the design focuses on the hypertext
navigation model. The coarse navigation design can be
automatically derived from the business process,
according to the rules presented in section 4.4.

The final result of the navigation model (already
refined by the designer after the automatic translation)
is shown in Figure 5. The translation is obtained as
follows: the start event becomes a Start Case link; the
three parallel activities are rendered as three pages
(marked with “A”) within an alternative page; the
sequential behaviour is implemented by the Continue
links, directly connecting an activity to the following
one, through a Stop action on the current activity and a
Start on the next one (links on the top of Figure 5). The
parallel behaviour is implemented by the remaining
links: the Complete Purchase links on the top lead to
the Complete Checkout activity (not shown), whose
starting is conditioned on the completion of all the

three parallel activities. For moving from one parallel
activity to the other the Parallel Activity links are
designed on the bottom part of the figure.

All these features can be generated automatically
by the translation of the workflow and do not need
refinements or updates by the designer, while the
remaining details are specified by the designer in the
WebRatio environment. In this example, forms are
located into the pages and also contain hidden fields
for tracking information submitted in the other
activities. This allows the final validation of the
submitted data, which is finally performed only by the
Complete Purchase links. When exiting each activity,
the submission is saved by proper operations. The
main page also contains a fixed part that displays the
current user and the overall status of the order.

For the presentation model, RUX-Method is able to
extract the information available in the WebML
specification (Section 4.5) to build a first version of the
abstract interface of the application by means of the
Connection Rules. This first Interface level is depicted
in Figure 6, where alternative and simple views are
shown for the check-out process. Connectors are
depicted as boxes with a white circle. Text elements
for input (incoming arrows) and output (outgoing
arrows) are represented as light boxes with a “Aa”
label.

The second step is the applications of the
Transformation Rules that provide a draft version of
the Concrete Interface, which needs to be refined by
the modeller, who can select the interface components
to use. Operation chains can be triggered by normal
WebML links or by Start events when a process needs
to be triggered (e.g. the Start Case Link in Figure 5).
RUX-Model is able to specify both kinds of triggers
using the CALLActions primitive.

When using the RUX-Method CASE tool (RUX-
Tool [10]), the first step can be performed
automatically and the second one semi-automatically.

Figure 5. Hypertext model of the Checkout.

160

Figure 6. RUX-Method Abstract Interface model.

6. Related work

The main innovation of our approach is the
exploitation of BPM for RIA design, allowing partial
RIA code generation using WebRatio and RUX-Tool
with a MDA life-cycle, a missing feature in the related
work, with the exception of [1]. With respect to [1], we
address a better separation of concerns regarding the
data and business logic distribution due to the
introduction of business processes for those issues.
However, a missing feature in [1] is RIA
communication specification.

As [4] claims, presentation model is an aspect
which has been so far ignored in the Web Engineering,
where many hypertext/navigation models mix UI
presentation features. Many RIA UI capacities like
animations or progressive downloads are missing also
in [1]. RUX-Method allows a more refined and
independent specification of the presentation model.

Our approach is also different with respect to other
recent proposals in the Web Engineering field to
represent the RIA foundations (e.g. [12]), because we
include a more abstract level through the introduction
of business processes, which are used specifically for
RIAs, while other works (e.g., [6]), generically
introduce business processes for Web applications.

7. Conclusions

In this paper we presented a methodology and a set
of conceptual models for addressing design and
development of RIAs by means of a high level design
view that exploits business process models. We have
shown how BPMN can be translated to a WebML
specification of a single-page paradigm Web
application. Then, by integrating the RUX-Method

features, we have shown how refined rich interface
implementation can be achieved.

The proposed mix of models allows a fine grained
design of rich interaction. Due to the generality of the
approach, the business process-based design can be
applied to other hypertext navigation models and other
presentation models, by simply specifying the new
mappings.

8. References

[1] Bozzon A., Comai S., Fraternali P., and Toffetti Carughi
G., “Conceptual Modeling and Code Generation for Rich
Internet Applications”, International Conference on Web
Engineering, Springer, 2006, pp. 353-360
[2] Brambilla M., Ceri S., Fraternali P., and I. Manolescu,
"Process Modeling in Web Applications", ACM Transactions
on Software Engineering and Methodology (ACM TOSEM),
vol. 15, no. 4, 2006, pp. 360-409
[3] Ceri S., Fraternali P., Bongio A., Brambilla M., Comai S.,
and Matera M., Designing Data-Intensive Web Applications,
Morgan Kauffmann, San Francisco, 2002
[4] Daniel F., Yu J., Benatallah B., Casati F., Matera M., and
Saint-Paul R., “Understanding UI Integration: A Survey of
Problems, Technologies, and Opportunities”, IEEE Internet
Computing, vol. 11, no. 3, 2007, pp. 59-66
[5] Gómez J. and Cachero C., “OO-H Method: extending
UML to model web interfaces”, Information modeling for
internet applications, Idea Group Publishing, 2003
 [6] Koch N., Kraus A., Cachero C. and Meliá S.,
“Integration of Business Processes in Web Application
Models”, Journal of Web Engineering, Rinton Press, vol. 3
is.1, 2004, pp. 22 - 49.
 [7] Linaje M., Preciado J.C., and Sánchez-Figueroa F.,
“Engineering Rich Internet Application User Interfaces over
Legacy Web Models”, Internet Computing, vol.11, iss. 6,
2007, pp. 53-59
[8] Preciado J.C., Linaje M., Comai S., and Sanchez-
Figueroa F., “Designing Rich Internet Applications with Web
Engineering Methodologies”, International Symposium on
Web Site Evolution, IEEE, 2007, pp. 23-30
[9] Preciado J.C., Linaje M., and Sánchez-Figueroa F., “An
approach to support the Web User Interfaces evolution”,
Adaptation and Evolution in Web Systems Engineering ICWE
Workshop on, Springer, 2007, pp. 94-100
[10] RUXProject Homepage: www.ruxproject.org
[11] Schwabe, D., Rossi, G. and Barbosa, S., “Systematic
Hypermedia Design with OOHDM”, International
Conference on Hypertext, ACM Press, 1996, pp. 116 - 128
[12] Urbieta M., Rossi G., Ginzburg J. and Schwabe D.,
“Designing the Interface of Rich Internet Applications”,
Latin-American Conference on the WWW, IEEE, 2007,
pp.144-153
[13] WebML, Mapping BPMN - WebML, full description
http://home.dei.polimi.it/mbrambil/RIA/bpml2webml.pdf

161

