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Abstract

Information systems for the support of complex business
processes are often equipped with web-based front-ends to
allow convenient user access. To produce executable speci-
cations of the users’ interactions with such web-based ap-

plications, we use a visual language that enables developers
to model their complex dialog structures. In this paper, we
introduce the formal semantics of the core constructs of this
Dialog Flow Notation: We de ne its syntax in terms of in-
variants about the permitted elements and their relations,
and show how any words of the language (i.e. any syntacti-
cally correct dialog ow speci cations) can be mapped to a
deterministic pushdown automaton whose behavior de nes
the notation’s semantics. This gives us and other tool de-
velopers a formal basis for the design and implementation
of tools and frameworks that mirror the precise meaning of
all DFN constructs.

1. Motivation

In the past years, web-based user interfaces have become
increasingly popular front-ends for applications that shall
be accessible anywhere, anytime, and on any device. Espe-
cially in the area of information systems that are designed
to support complex business processes (both between enter-
prises, and between enterprises and their consumers), these
applications have become increasingly sophisticated. The
complexity of the business processes is typically mirrored
by the complexity of the information system’s navigation
structure, which should enable users to perform their tasks
ef ciently, yet be exible enough to deal with any contin-
gencies that may occur within a process.

To model such complex navigation structures for web ap-
plications, we use the Dialog Flow Notation (DFN), a visual
language for modeling the interplay between user activities
and application operations that characterize a web applica-

tion [4]. One of the core features of the DFN is the notion
of “dialog modules” that can be nested arbitrarily in order
to reuse dialog sequences in different contexts throughout
an application.

While all DFN constructs were designed with careful
regard to their conceptual and technical compatibility, the
language’s semantics have so far only been encoded opera-
tionally in the implementation of a Dialog Control Frame-
work (DCF) that is capable of executing DFN-based dialog
speci cations. However, these semantics are not easily ac-
cessible to other tool developers, who thus cannot be com-
pletely sure that particular language constructs express ex-
actly what they mean, or that framework implementations
for other platforms work exactly as they intended. This
has become especially apparent in our recent development
of tools [3], applications [5] and extensions [6] based on
the notation. The integration of tools for creating, validat-
ing and executing DFN speci cations, and the parallel ex-
istence of several implementations of the framework, make
precisely de ned and well-understood semantics indispens-
able.

In this paper, we therefore introduce the formal se-
mantics of the DFN’s core constructs. After an informal
overview of the main language features (Sect. 2), we for-
mally introduce the elements of the DFN’s syntax in terms
of sets, relations and invariants that any DFN speci cation
must conform to (Sect. 3). Then, we map this syntax onto
an automaton model that realizes the run-time behavior the
DFN describes (Sect. 4), and we show how these semantics
can be implemented by tools in practice (Sect. 5). After an
overview of the related work (Sect. 6), we discuss the ben-
e ts of these semantics for the implementation of tools and
applications employing the DFN (Sect. 7).

2. Notation Overview

The DFN is a visual language for the speci cation of
all possible user navigation steps and application reactions

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.25

135



(collectively termed the dialog ow) that can occur within
a web-based application. As a running example for this sec-
tion, we will refer to the dialog in Fig. 1 that models a typ-
ical scenario in web-based applications: If a user is not yet
logged in, the application should ask him for his credentials,
validate them and proceed according to the user’s permis-
sions – in a travel portal, for example, a regular user may be
presented with forms to search for ights and hotels, while
an administrator may see forms for updating the ight and
hotel database.

2.1. Masks, actions and events

In the DFN, web pages are called dialog masks and sym-
bolized by dog-eared sheets, while application logic opera-
tions are called actions and symbolized by circles. Collec-
tively, we call these basic elements atomic elements since
their implementation is not relevant at the level of the nav-
igation, which is the sole focus of the DFN. In Fig. 1, for
example, the login mask may contain a form for users to
enter their credentials, and the check credentials action may
contain logic to validate that input.

In the implementation, developers may be tempted to
blur the distinction between masks and actions, since it is
technically possible to implement both presentation and ap-
plication logic in either component. To realize the clean
separation of presentation and application logic that the
DFN encourages, developers are urged to model all com-
ponents that generate page markup as masks, and all com-
ponents that do not generate markup as actions.

These elements are connected by dialog events (sym-
bolized by arrows) that specify which masks or actions are
called under which conditions. For any event, this condi-
tion depends on which element generated it, and what la-
bel it carries: In our example, the ok event is received by
the mark user as logged in action if it was generated by
the check credentials action, but received by the has admin
rights? action if generated by the mark user as logged in
action. For events generated by masks, the label is deter-
mined by a particular parameter in the HTTP request (typ-
ically identifying the link or button that the user clicked,
such as the submit event created by the login mask in our
example). For events generated by actions, the label is set
by the application logic (typically identifying the outcome
of the operation, such as the incorrect event generated by
the check credentials action).

Every dialog element can generate and receive multiple
events (only one at a time, though), enabling the developer
to draw complex dialog graphs that specify all possible
transitions between masks and actions. Since we can easily
conceive useful dialog graph fragments comprising several
consecutive masks or actions, the DFN does not require di-
alog graphs to be bipartite (in Fig. 1, for example, splitting
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Figure 1. De nition of (top) and references to
(bottom) the login dialog module in a travel
portal.

the processing of the user’s credentials into three separate
actions enables the module to react exibly to different sit-
uations, like bypassing the credential check when the user
is already logged in). This implies that not all DFN events
are equivalent to HTTP requests or responses – rather, a
mask-to-mask transition implies a full request-response cy-
cle, while an action-to-action transition happens completely
on the server within a larger request-response cycle.

2.2. Dialog modules

Theoretically, the complete dialog ow of an application
could be described using only atomic elements. However,
the resulting speci cations would quickly become too large
to handle conveniently, and the “ at” structure does not sup-
port reuse of often-needed dialog graphs. Since reuse of
program parts is a fundamental concept in programming
and makes particular sense in user interaction, where the
user expects to perform similar tasks in similar ways, the
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DFN provides a construct to encapsulate dialog graphs in
dialog modules that can then be invoked from other dialog
graphs. To maximize the potential for re-use, dialog mod-
ules can call each other recursively – thus, they are not mere
meta-constructs for structuring the designer’s view of the di-
alog graph, but dialog elements with run-time semantics in
their own right.

Conceptually, we need to discern between a module’s
de nition, which speci es the “interior” dialog graph con-
tained in a module, and a module’s references, which show
how a module is embedded in other (its so-called “exte-
rior”) dialog graphs. Module de nitions are symbolized
by large boxes with round corners containing the interior
dialog graph, while module references are symbolized by
smaller oblate ovals. When talking about the nesting rela-
tionships between modules, we use the term “sub-module”
to denote a module whose reference is nested into another
module’s de nition, and the term “super-module” to de-
note a module whose de nition contains references to other
modules. Figure 1, for example, shows the de nition of
the login module, which contains a reference to the create
account sub-module, and is itself referenced in the ights
and hotels super-modules. The interior dialog graphs of the
ights and hotels modules thus are exterior dialog graphs of

the login module.

When a module is called from an exterior dialog graph
that it is embedded in, traversal of its interior dialog graph
begins at the initial anchor (symbolized by a solid disk).
When the traversal of the interior dialog graph reaches a
terminal anchor (symbolized by a circled dot), the module
terminates, and an event originates from it that continues the
traversal of the exterior dialog graph. This so-called “termi-
nal event” carries the same label as the terminal anchor that
had just been reached. For example, the is user and is admin
terminal anchors in the login module de nition correspond
to the is user and is admin events that originate from its
reference in the ights and hotels super-modules.

In the DFN, all dialog graphs must be encapsulated in
modules that call each other. At the top of this invocation
hierarchy must be a root compound whose traversal starts
when a client sends its rst request to the application server
(e.g. requesting the home page). The root compound is a
special type of dialog module since it only has a de nition
(symbolized by a thicker contour), but no references to it.
Also, since there is no way for users to “terminate” a web
application (as they can only leave the site, e.g. by clos-
ing the browser window), the root compound cannot mean-
ingfully terminate. Hence, we prohibit that it contains any
terminal anchors, and instead recommend that its interior
dialog graph should be cyclic.

2.3. Need for formalization

The above overview of the DFN may suf ce as an in-
formal introduction to give developers a general idea of the
involved concepts. However, to enable application develop-
ers to model dialog graphs that precisely express their ex-
pectations of the web application’s behavior, and to enable
tool developers to implement dialog validation and control
algorithms that work precisely as prescribed by the speci-
cations, we need to de ne our language’s semantics for-

mally.

While the features introduced above represent only a
subset of the DFN, these transitions between masks and
actions, as well as the nesting of dialog modules, are the
essential concepts that form the foundation for all other lan-
guage constructs. As we will see in the following sections,
these concepts already constitute a basic language in their
own right, whose formalization is a non-trivial challenge.

The formalization effort comprises two steps: Firstly, we
need to de ne the DFN’s syntax, i.e. formally express the
types of its elements and the invariants that must hold for all
dialog ow speci cations, i.e. all words of the DFN. Sec-
ondly, we need to de ne the DFN’s semantics, i.e. formally
express the behavior of any application described by a word
of the DFN. These steps will be presented in detail in the
following two sections.

3. Formal Syntax of the DFN

While the Dialog Flow Notation is a visual language, we
do not describe its visual syntax (i.e. its icons and their re-
lationships such as connectedness, insideness etc.) here.
Rekers and Schürr, for example, nicely show how to sep-
arate the different layers of visual syntax, and how to arrive
at a conceptual representation (the abstract syntax graph)
[21]. We do not show this straightforward step here, as we
are not concerned with the visual peculiarities of our lan-
guage, which we regard as quite conventional in this regard.
Hence, we will introduce the sets and relationships directly
from the notation on the level of the abstract syntax graph.

In the following subsections, we introduce a number of
functions to express relationships between elements of the
language. Unless otherwise noted in the function’s de ni-
tion, we assume that all these functions are total. Strictly
speaking, we would have to require this property by for-
mulating invariants on the functions. However, since dia-
log graphs that do not satisfy these invariants would already
be incomplete and thus nonsensical on the visual level (e.g.
because they contain “dangling” events or unlabeled ele-
ments), we rely on the prerequisite that these constraints
are already ensured by the visual syntax.
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3.1. Dialog elements

The syntax of the DFN can be expressed in terms of in-
variants that must hold for sets containing the elements we
introduced in the previous section:

Atoms and anchors. For the formal model, we rst
de ne the nite sets of all dialog masks (Emask), actions
(Eact), initial anchors (Einit) and terminal anchors (Eterm)
of an application.

Note that the labels that dialog elements carry in the vi-
sual notation are just a feature allowing humans to conve-
niently refer to individual elements. Conceptually, the el-
ements’ identities are derived from their existence as sepa-
rate visual entities with distinct spatial coordinates, which
are independent of the labels visually associated with those
entities (for example, a mask x and an action x in a module
m, and a mask x in a module n all carry the same label, but
constitute three distinct entities). Consequently, we do not
de ne a mapping of elements to labels here, as we do not
associate any semantics with this mapping anyway.

Modules. Dialog modules differ from atoms and an-
chors in that they appear in two forms, namely their de -
nition and use. In order to distinguish the two forms, we
de ne:

De nition 1 Emod is the nite set of all module references
within an application.

De nition 2 Dmod is the nite set of all module de nitions
within an application.

In the visual notation, the labels written inside module
reference icons and above module de nition contours asso-
ciate references with their respective de nitions. In the for-
mal model, we can represent this association more imme-
diately by a reference relation that indicates which module
reference refers to which module de nition:

De nition 3 The total function τ : Emod → Dmod is the
reference relation that speci es which module de nition d ∈
Dmod a module reference e ∈ Emod refers to.

Root compound. As we have seen, the root compound
is a special element insofar as it shall not be nested into (i.e.
called from) any other module. We therefore de ne it ex-
plicitly as an element that does not belong to the codomain
of the reference relation τ , so no module reference can refer
to it:

De nition 4 d0 /∈ Dmod is the root compound.

Since the root compound shares some properties that we
will de ne for nestable modules, we introduce a super-set
of all modules that comprises both types:

De nition 5 D := Dmod∪{d0} is the nite set of all mod-
ule de nitions and the root compound de nition.

To simplify the formulation of some of the following
constraints, we subsume the different dialog element types
in the sets of all atomic elements (Eatom), all elements
able to generate events (Egen), all elements able to receive
events (Erec), and all elements in the whole application (E):

De nition 6 The nite sets

Eatom := Emask ∪ Eact

Egen := Eatom ∪ Emod ∪ Einit

Erec := Eatom ∪ Emod ∪ Eterm

E := Eatom ∪ Emod ∪ Einit ∪ Eterm

are unions of their pairwise disjoint subsets.

Containment constraints. With this groundwork laid,
we can focus on the relationships between the element types
we just de ned. First of all, we de ne a function that asso-
ciates all dialog elements with the module de nition that
they are contained in:

De nition 7 The total function μ : E → D is the contain-
ment relation that speci es which module de nition d ∈ D
contains an element e ∈ E.

Multiplicity constraints. While developers may place
an arbitrary number of masks, actions and module refer-
ences in a module de nition’s interior dialog graph, the
placement of anchors must obey special rules. As we have
seen, every module must have exactly one entry point. As
modules also need to terminate at some point to return con-
trol to the super-module from which they were called, every
module must also have at least one exit point. The root mod-
ule, however, cannot have any terminal anchors, since it has
no super-module to return to.

Invariant 1 Every module, as well as the root compound,
must have exactly one initial anchor:

∀d ∈ D : ∃1e ∈ Einit : μ(e) = d

Invariant 2 Every module must have at least one terminal
anchor:

∀d ∈ Dmod : ∃e ∈ Eterm : μ(e) = d

Invariant 3 The root compound must not have any termi-
nal anchors:

∀e ∈ Eterm : μ(e) �= d0
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3.2. Dialog events

Since dialog events do not represent physical entities, but
just transient input, we do not need to represent each of their
visual instances as a unique set element. Instead, the set of
events just contains all unique event labels found in a model
(including the “empty label” ε):

De nition 8 V ⊃ {ε} is the nite set of all events within
an application.

Receiver relation. The connection of elements through
events is expressed by the so-called receiver relation. This
is a partial function since not all elements can generate all
events – rather, every element will typically generate only a
small subset of all events:

De nition 9 The partial surjective function

η :⊆ Egen × V → Erec

is the receiver relation that de nes which element e′ ∈ Erec

receives the event v ∈ V generated by the element e ∈
Egen.

By de ning the function as surjective, we have already
ensured that every receiver is reachable. In addition, valid
dialog ow speci cations are subject to a number of addi-
tional constraints:

Regular event constraints. To enforce the encapsula-
tion of dialog graphs in modules, we rst require that events
connect only elements within the same module – it is not al-
lowed to specify an event from an element within one mod-
ule to an element within another module:

Invariant 4 The generator and receiver of any event must
be in the same module:

∀((e, v), e′) ∈ η : μ(e) = μ(e′)

To ensure that the traversal of dialog graphs is deter-
ministic, we require that any element cannot generate two
events with the same name:

Invariant 5 Any two events generated by the same element
must be different from each other:

∀((e, v), e′1), ((e, w), e′2) ∈ η : v �= w

To ensure that a module can be successfully traversed,
the DFN requires that there must be a path from the initial
anchor to each receiver in a module, and a path from each
generator to a terminal anchor. These constraints can easily
be formulated using the transitive closure of the receiver
relation - however, since η is not a homogeneous relation,
we rst need to project it into a relation with equal domain
and codomain:

De nition 10 The partial function

n :⊆ E → E,

n = {(e, e′) ∈ Egen × Erec | ∃v ∈ V : η(e, v) = e′}

is the connection relation indicating that e ∈ Egen and e′ ∈
Erec are directly connected by at least one event.

We can now use the transitive closure n+ of this relation
to require that all elements in the graph are reachable, and
that there are no dead ends:

Invariant 6 Any receiver must be reachable on a path from
the initial anchor:

∀e′ ∈ Erec : ∃e ∈ Einit : (e, e′) ∈ n+

Invariant 7 At least one terminal anchor must be reach-
able on a path from any generator, except in the root mod-
ule:

∀e ∈ Egen : μ(e) �= d0 ⇒
∃e′ ∈ Eterm : (e, e′) ∈ n+

Initial event constraint. To ensure the unambiguity of
the dialog graph’s starting point, exactly one event (the so-
called “initial event”) must be generated by each module’s
initial anchor. Since its traversal does not depend on the
receipt of an event generated by a preceding mask or action,
it must be unlabeled (in contrast to any other event, which
must carry a label in order to be identi ed at run-time):

Invariant 8 Initial events, and only these, must be unla-
beled:

∀((e, v), e′) ∈ η : e ∈ Einit ⇔ v = ε

Terminal event constraints. Terminal anchors must
carry information on how the traversal of the exterior dialog
graph shall continue upon termination of a module. They
are therefore associated with the event that shall continue
traversal of the module’s exterior dialog graph upon its ter-
mination:

De nition 11 The total function λterm : Eterm → V \{ε}
is the terminal event relation that speci es which event v ∈
V \ {ε} a terminal anchor e ∈ Eterm is associated with.

To guarantee consistency of a module’s interior and ex-
terior dialog graphs, the labels of the terminal anchors in its
interior dialog graph must match the labels of its terminal
events in any exterior dialog graphs – the DFN does not al-
low more, less or other events to originate from the module
reference than there are terminal anchors in the module’s
de nition, and vice versa.
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Invariant 9 For all modules, the terminal events they gen-
erate must all be associated with the terminal anchors they
contain:

∀e ∈ Emod : (∃v ∈ V, e′ ∈ Erec : η(e, v) = e′

⇔ ∃t ∈ Eterm : μ(t) = τ(e) ∧ λterm(t) = v)

Words of the DFN language. Given these de nitions
and invariants, we can now de ne any word in the Dialog
Flow Notation as a tuple:

De nition 12 An application’s dialog ow is de ned by

D := (Emask, Eact, Einit, Eterm, Emod,

Dmod, d0, τ, μ, V, λterm, η)

4. Notation Semantics

Based on the above syntactic foundation, we can now
describe the semantics of the DFN. In Sect. 2, we stated
that the purpose of the DFN is to specify the behavior of
the dialog control logic so that it accepts a certain subset of
user-generated input events depending on the current state
in the dialog ow, and generates a response by triggering
the invocation of masks and/or actions. To achieve this, we
need to map the DFN speci cation to a suitable automa-
ton that models the run-time behavior we aim to describe
through the DFN. Given that, we can explain the semantics
of the DFN as speci cations of such an automaton.

4.1. Suitable model for run-time behavior

At rst sight, one might believe that a nite state machine
is suf cient for our task, since the atomic elements can sim-
ply be interpreted as states and the events as transitions in a
state transition graph. Modules might be considered as sim-
ple constructs for re ning certain states, so that by resolving
all nesting levels, a very large but at transition graph could
be derived. Yet, if one considers the capability to recur-
sively embed modules into each other, it quickly becomes
obvious that we need at least a (deterministic) pushdown
automaton (DPDA).

We follow the reasoning of Green [12], who speaks
of transition networks as special adaptations of DPDAs –
the crucial difference is that the transition network is aug-
mented with an output function referred to as the “action
function”. In automata theory, the output function γ is usu-
ally omitted, as decidability is of interest. For dialog mod-
els, however, an automaton without output, i.e. without re-
sponses to user input, would be useless, so we include it in
our automaton model.

In general, a deterministic pushdown automaton P is a
tuple P = (Q,Σ,Ω,Γ, δ, γ, q0, Z0, F ), with:

• Q, the nite set of states

• Σ, the nite set of input symbols

• Ω, the nite set of output symbols

• Γ, the nite set of stack symbols

• δ : Q×(Σ∪{ε})×Γ → Q×Γ∗, the transition function

• γ : Q → Ω, the output function

• q0 ∈ Q, the initial state

• Z0 ∈ Γ∗, the initial stack string

• F ⊆ Q, the set of accepting states

A con guration of a DPDA P is described by (q, S) ∈
Q × Γ∗, where q is the current state of P and the string
S = s1s2 · · · sn (an element of the Kleene closure Γ∗)
denotes the contents of the stack. A transition to a sub-
sequent con guration (q′, S′) occurs when P receives an
input i ∈ Σ, so that δ(q, i, s1) = (q′, S′), where S′ is the
string that should replace s1 on top of the stack (for exam-
ple, S′ = s0s1 would indicate that s0 is pushed on top of
s1, while S′ = ε would indicate that s1 is removed from
the top of the stack). After completion of a transition, the
new state is q′, and the stack content is S′s2 · · · sn. Having
identi ed the new state q′, the output o ∈ Ω is produced by
evaluating γ(q′) = o.

Such a DPDA represents a dialog system in the following
way: Σ represents the spectrum of possible input symbols
coming in from the user or application, and Ω represents
the available reactions (e.g. dialog masks to be displayed
or application logic to be executed). Whenever the user or
the application provides input that can be recognized by the
DPDA, a transition occurs. At its end, a new output opera-
tion is invoked that will provide new input, etc.

4.2. Mapping DFN words to DPDAs

We will now discuss the individual elements of the
DPDA tuple P and show how they are constructed from
the individual elements of a DFN tuple D.

States. Following a bottom-up approach, we will rst
discuss which language elements of the DFN should be
considered as states in a DPDA. Obviously, atoms resem-
ble states, so we will include them in Q. Regarding the
anchors, one might argue that initial and terminal anchors
are just notation constructs, rather than actual states of the
application. However, we will see that these states are tran-
siently assumed in the process of calling and terminating
dialog modules, and thus need to be in Q. That leaves us
with module references. While they are embedded into the
dialog graph just like atoms, they do not represent actual
states but serve as references to module de nitions. Thus,
the rst “tangible” state related to a module is its initial an-
chor, which we have already noted for inclusion.
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In addition, we have to include an element that has no
direct analogy in the DFN; an error state. The automaton
falls back to this state, denoted by †, when an input symbol
is read for which D does not de ne an event in the current
context. Altogether, we get:

De nition 13 Q := Eatom ∪ Einit ∪ Eterm ∪ {†} is the
DPDA’s set of states.

Input alphabet. At run-time, the dialog control logic
can receive input from masks or actions in the form of
events. This is the only kind of “input” we can specify
within the DFN, so the set of input symbols corresponds
to the set of events.

De nition 14 Σ := V is the DPDA’s set of input symbols.

Output alphabet. We interpret “output” as the informa-
tion on which mask or action is invoked next. Hence, the
atoms constitute the output alphabet:

De nition 15 Ω := Eatom is the DPDA’s set of output
symbols.

Stack alphabet. DFN words specify the nesting and ter-
mination of modules at run-time. In order to keep track of
the order in which modules are nested at any given time, we
need to put them on a stack that re ects the nesting hierar-
chy. Hence, we equate the stack alphabet of the DPDA with
the set of module de nitions.

De nition 16 Γ := D is the DPDA’s set of stack symbols.

Initial state and stack symbol. De ning the initial state
means to de ne the “entry point” into the dialog ow. In
the DFN, we de ned the root compound as the entity that
cannot be nested into any other module. We also de ned
the initial anchor of any module to be the starting point of
its dialog graph. Hence, we de ne the initial anchor of the
root compound to be the initial state of the DPDA, and con-
sequently the root compound to be the initial stack symbol:

De nition 17 Z0 := d0 is the DPDA’s initial stack symbol.

De nition 18 q0 ∈ {e | e ∈ Einit ∧ μ(e) = d0} is the
DPDA’s initial state.

The latter de nition is unambiguous and always possible
since Inv. 1 requires that there is exactly one initial anchor
per module, and Def. 4 establishes that there is exactly one
root compound for each DFN word.

Accepting states. When an automaton is used for lan-
guage recognition, arrival at an accepting state (after read-
ing the complete input sequence) indicates whether this se-
quence is part of the language or not. This notion does
not exactly t the scenario of a web-based dialog controller,

where no nite input sequence exists a priori. Here, an in-
put sequence can only be deemed “invalid” if an input sym-
bol is encountered that was not expected in the current state,
i.e. if the respective event was not speci ed in the DFN’s
receiver relation η. In this situation, we said, the system
would assume the error state †. This state, together with the
initial and terminal states (that are of a transient nature only)
are the non-accepting states, leaving the atoms as accepting
states:

De nition 19 F := Eatom is the DPDA’s set of accepting
states.

Transition function. Finally, we need to de ne the tran-
sition function. The challenge here is to exactly map the
transitions between dialog elements in the DFN, and the
nesting and termination of modules, to matching transitions
in the DPDA. In the following paragraphs, we will de ne
the transition function δ(e, v, d) for a dialog element e ∈ Q,
an event v ∈ Σ and a module de nition d ∈ Γ as the disjoint
union of several independent functions that together cover
the different types of transitions in the dialog ow.

We will illustrate each step using the simple example in
Fig. 2, which shows a recursive dialog ow on top and the
corresponding DPDA on the bottom. In the DPDA, we an-
notate transitions in the form v, d/d∗, where v is the incom-
ing event, d the top stack element, and d∗ is the string of
elements to replace the top stack element. The initial an-
chor states are denoted by INITm, where m is the name of
the respective module de nition.

Transitions to atoms. The most straightforward transi-
tion is an event that leads to an atom, i.e. η(e, v) ∈ Eatom.
Since we remain within the same module, the stack of the
DPDA remains unchanged:

De nition 20 The transition to an atom is de ned by

δ�atom(e, v, d) = (η(e, v), d)

In the example, we can see this e.g. in the transition
ε,W/W between the initial anchor state INITW of the
root compound and the action state A.

Transitions to sub-modules. If an event leads to a sub-
module (i.e. η(e, v) ∈ Emod), the module reference de-
livered by η cannot be used as the new state, as discussed
above. Rather, we need to push the called module’s de -
nition onto the stack and use its initial anchor as the new
state:

De nition 21 The transition to a module reference (i.e. the
calling of a module) is de ned by

δ�mod(e, v, d) = (i ∈ Einit : μ(i) = τ(η(e, v)),
τ(η(e, v))d)

141



M

W

e

t

Me

M

INITW A
,W / W

A B

INITM
e,W / MW

B

t

f

,M / M

e,M / MM

t
f,M / 

t

,W / W

,M / 

Figure 2. A recursive DFN example (top) and its translation into a DPDA (bottom).

The example illustrates this e.g. in the transition
e,W/MW between the action state A and the initial anchor
state INITM of the module M .

Transitions to terminal anchors. If an event leads to a ter-
minal anchor (i.e. η(e, v) ∈ Eterm), the module containing
the anchor will be terminated, and the dialog ow contin-
ues with the receiver of the terminated module’s terminal
event in the super-module’s dialog graph. This occurs in
two steps – in order to identify the super-module, we must
rst remove the current top element from the stack:

De nition 22 The transition to a terminal anchor (i.e. the
termination of a module) is de ned by

δ�term(e, v, d) = (η(e, v), ε)

In the example, this step occurs in the transition f,M/ε
from the mask state B to the terminal anchor state t.

Transitions from terminal anchors. After the transition
to the terminal anchor has removed the top stack element,
the DPDA can now determine the transition from the termi-
nal anchor (i.e. e ∈ Eterm) to the receiver of the terminal
event. For this purpose, we nd the sub-module m within
the now-current module de nition d (i.e. μ(m) = d) that the
terminal anchor e was contained in (i.e. μ(e) = τ(m)), as
well as the event v′ that is associated with the terminal an-
chor (i.e. λterm(e) = v′). We can then retrieve this event’s
receiver (i.e. η(m, v′)), while the current module d remains
unchanged:

De nition 23 The transition from a terminal anchor (i.e.
from a terminated module’s reference) is de ned by

δterm�(e, v, d) = (η(m, v′), d)
with m ∈ Emod : μ(m) = d ∧

μ(e) = τ(m)
and v′ ∈ V : λterm(e) = v′

The example shows this e.g. in the transition ε,W/W
from the terminal anchor state t to the action state A.

Complete transition function. To complete the transition
function’s construction, we combine the above partial func-
tions and add a transition to the error state † for all cases
where a new state could not be determined otherwise:

De nition 24 The PDA’s transition function is

δ(e, v, d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ�atom(e, v, d) for η(e, v) ∈ Eatom

δ�mod(e, v, d) for η(e, v) ∈ Emod

δ�term(e, v, d) for η(e, v) ∈ Eterm

δterm�(e, v, d) for e ∈ Eterm

(†, d) otherwise

We can easily show that the combination of these func-
tions together cover the whole set of transitions that may
occur for any dialog ow speci cation:

• δ covers all inter-element transitions explicitly spec-
i ed in η, since the receiver sets Eatom, Emod and
Eterm are exactly those sets whose union constitutes
the codomain of the DFN’s receiver relation.

• δ covers all inter-module transitions implied in η, since
the case e ∈ Eterm is the only situation in which we
need to nd a successor for a state that is not in the
domain of η.

• δ covers all remaining transitions that are unde ned in
η, since all the valid alternatives are handled by the
above branches.

Output function. In Sect. 4.1, we argued that we need
an output function to let the DPDA meaningfully model the
desired application behavior, where the output symbols are
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Figure 3. Eclipse-based Dialog Flow Editor with validation results.

the masks and actions. In contrast to a classic Mealy ma-
chine, the output depends only on the current state and oc-
curs immediately upon entering the state.

When de ning the states of the DPDA and the transition
function, we have seen that it was necessary to introduce
some “transient” states that handled the nesting and termi-
nation of modules. Those states do not generate any kind
of output (other than “empty output” ε). In the de nition
of the output function, we therefore need to distinguish be-
tween states that are atoms and those that are not:

De nition 25 The DPDA’s output function γ is de ned by

γ(q) =

{
q for q ∈ Eatom

ε otherwise

With this, we have shown how a DPDA P can be con-
structed from any DFN word D as a formal model of the
interpretation of the speci cation D by a suitable dialog
control logic. Besides providing precise rules for the imple-
mentation of the run-time logic, the formal representation
is also helpful in checking the correctness of dialog ow
models, as we will show in the following section.

5. Support for Tool Development

Having introduced the formal syntax and semantics of
the DFN, we will now show how these formalisms sup-
port the development of corresponding tools for web ap-
plication development. As an example, our current tool
chain consists of a visual editor for the speci cation of dia-
log ows, a validation component for checking dialog ow
models for syntactic and semantic correctness, and a run-
time framework driving the execution of web applications’

dialog masks and actions according to a speci ed dialog
ow model.
The dialog ow editor shown in Fig. 3 enables appli-

cation developers to build dialog ow models from visual
shapes corresponding to the elements of the Dialog Flow
Notation. As this editor has been realized as a plug-in for
the Eclipse IDE, it uses the Eclipse Modeling Framework
(EMF) for the internal representation of all model elements,
where instances of Mask, Action, Module classes etc.
correspond to the elements of the sets Emask, Eact, Emod

etc.
To give application developers instant feedback on the

correctness of their model, the editor employs a validation
component that continually checks the model’s consistency
and indicates any constructs violating the DFN rules.

Regardless of how the visual representation is imple-
mented in a particular editor, it can easily be validated and
ultimately executed if it corresponds to the sets and rela-
tions de ned in Sect. 3. Our dialog ow validator, for exam-
ple, transforms the visual editor’s EMF model into a Prolog
fact base by 1:1 translation of dialog elements into mask,
action, module_ref etc. facts, and dialog events into
event facts. Simple relationships between elements can
be expressed by rules such as the following, which re ects
part of Def. 6:

receiver(ID) :-
mask(ID); action(ID);
module_ref(ID); terminal_anchor(ID).

On this basis, we can check the model’s validity by sim-
ply formulating the invariants introduced in Sect. 3 as Pro-
log rules, and running them against the Prolog prover to nd
any violating elements.
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As an example, the following Prolog rule checks Inv. 6
(every receiver must be reachable from an initial anchor):

violates_inv06(ID) :-
receiver(ID),
\+((init_anchor(IA), path(IA, ID))).

For this rule, the Prolog prover will return all IDs of re-
ceivers for which there exists no initial anchor on a path to
them. The IDs of these elements are then returned to the
editor, which displays error or warning messages depend-
ing on the severity of the violation, as shown in the right-
hand panel of Fig. 3. In total, we implemented about 20
rule checks in this way to cover all constructs of the DFN
(including a number we could not discuss in this paper for
the sake of brevity).

This approach enabled a very straightforward implemen-
tation of the validator component, since we did not need to
be concerned with the technicalities of e.g. traversing refer-
ences in an object-oriented graph structure, but could work
on the actual level of the notation semantics, as the formal
invariants and the Prolog rules are very similar. In conse-
quence, we can be sure that the validator component en-
forces the notation’s precise semantics. This is a major ben-
e t of the formal semantics, since e.g. an object-oriented
implementation of informal prose semantics would be more
prone to errors in the design of its rule-check algorithms, as
well as their technical realization.

The formal DPDA model lends itself to implementa-
tion in a dialog control logic that mirrors the semantics
described in Sect. 4. At the core of our Java Servlets-
based Dialog Control Framework (DCF) is a stack-based
automaton model similar to the one shown in Fig. 4. For
each user, it maintains the current con guration (q, S) ∈
Q×Γ∗ in the DialogAutomaton’s currentElement
attribute (representing q) and its stack of DialogModules
(representing S). While we distinguished module ref-
erences (Emod) and de nitions (Dmod) in the formal
model, the object-oriented design enables us to model
their relation more ef ciently by representing both in the
same DialogModule instance: Each of these instances
holds mappings (corresponding to the receiver relation
η) of generating and receiving DialogElements as-
sociated by their connecting DialogEvents, and each
DialogModule instance can be referenced as such
a generator or receiver itself. The DialogEvent
and DialogElement instances constituting these dia-
log graphs are created upon initialization of the framework
based on the previously validated dialog ow speci cations,
which can be expressed e.g. in XML format.

At run-time, the handleEvent method then refers
to these mappings in order to implement the behavior of
the DPDA’s transition relation δ, using the push, pop
and top methods to work with the module stack, and the

invokeAtom method to call masks and actions, as de ned
by the DPDA’s output function γ.

As the example of our tool chain shows, the Dialog Flow
Notation has executable semantics: Any dialog ow model
composed of the sets and relations de ned above can be au-
tomatically validated for its syntax according to the given
invariants, and any dialog ow model that satis es these
invariants can be automatically executed by a run-time en-
vironment based on a DPDA. The close alignment of the
language’s theoretical foundation and its practical speci ca-
tion, validation and execution is bene cial for tool develop-
ers as it provides a more solid and more rigorously testable
basis for their implementation. This also bene ts applica-
tion developers, who can be more certain that a web ap-
plication will actually behave according the intention they
expressed in their model.

6. Related Work

Research on UI design has been dealing with models for
dialog-based systems since over 20 years. For example,
Olsen described in 1984 how to use a PDA for user inter-
action management [19]. Shortly after, Green published his
widely acknowledged survey which compares different di-
alog models [12]. The approach we present here follows
his idea on formalizing recursive transition networks as DP-
DAs, and applies it to the eld of web-based applications.

Many approaches exist to specify dialogs for “classi-
cal” (i.e. window-based) GUIs on desktop systems: Kleyn
and Chakravarty use event decomposition graphs [17] (an
adapted version of AND/OR graphs) to specify semantics of
dialogs; Jacob works with nested state diagrams [15]. Both
are concerned with rather low-level aspects of dialogs, such
as mouse movements, yet abstract from layout concerns.
Goedicke and Sucrow suggest graph grammars as a spec-
i cation method for specifying dialogs in (classical) GUIs
[11]. In their approach, dialogs (together with their internal
structure) are modeled as graphs, and transitions between
graphs describe the possible changes of UI objects. Bers-
tel et al. introduce the concept of “visual event grammars”
[2]. They model dialogs by sets of automata that represent
parts of a GUI and communicate through events, but focus
mainly on the interplay of events and objects (i.e. widgets)
within individual dialogs.

All of these approaches require rather complex formal-
izations, as they either include very nely-grained event se-
mantics (mouse movement, scrolling) or aim at describing
the sequence of dialogs together with the structure and be-
havior of widgets inside dialogs. In our opinion, this is not
just a consequence of the higher complexity of desktop sys-
tems’ GUIs, but rather a strong indication that the dialog
ow should be engineered and designed separately from the

the presentation and application logic’s internals.
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Figure 4. Dialog controller design.

The notion of a dialog graph in our sense was used by
Britts in his survey of different UI systems and approaches
available at that time [8]. His dialog graphs share many se-
mantical concepts with the dialog ow of the DFN, but lack
the additional separation between masks and actions that the
DFN employs to model the core components of web-based
applications.

Ariav and Calloway pursue a similar approach with their
Dialog Charts [1]. They focus on the “outside” aspects of
dialogs, i.e. their sequence, and also separate user interac-
tion from machine interaction. Yet, their approach does not
comprise constructs for nesting dialog modules, as the DFN
does, and is not accompanied by a formalization of the no-
tation.

In the realm of hypertext-based applications, Statecharts
are often used, such as in the approach of Oliveira et al.
[10], and the Hypercharts extension proposed by Paulo et
al. [20]. Whilst concerned with the ow of web pages, these
speci cations focus to a great extent on the synchroniza-
tion of stateful document parts, such as multimedia content,
which is not the focus of the DFN.

The FARNav approach [13] resembles the DFN in its
explicit focus on how application operations (in addition
to user activities) in uence a web application’s dialog
ow, but lacks means to represent embeddable modules,

as most of the aforementioned Statecharts-based models.
The intention and utilization of Statecharts in Winckler and
Palanque’s StateWebCharts approach [22] comes closest to
the concepts of the DFN, and is provided with a formal def-
inition of the semantics.

WebML [9] is another approach for comprehensive mod-
eling of the data structure, presentation and navigation
structure in web applications, with particular strength in ap-

plications with dynamic data access. The ne-grained data
ow control mechanisms provided by the DFN [7] can be

formalized by mapping them to interprocedural data ow
graphs [14]; an approach which is beyond the scope of this
paper, however.

One might also consider coloured Petri nets [16] or UML
activity diagrams (as used in UWE [18]) suitable for the for-
mulation of dialog graphs. While these approaches can be
used to model the basic dialog graphs we have shown in
this paper, some more complex dialog patterns such as in-
heriting dialog graph fragments from generic presentation
channels, or aborting, resuming and returning from dialog
modules with run-time identi cation of unspeci ed event
receivers [4] would turn out quite cumbersome to model us-
ing these languages.

For easy adoption in practice, we therefore designed the
Dialog Flow Notation to be similar to established languages
in its broad concepts, but tailored to the challenges of web-
based dialog ows in its detailed constructs. Our rationale
for the choice of a deterministic pushdown automaton in
the formalization is similar: While one could conceive a
number of suitable formalisms for de ning the precise syn-
tax and semantics of the DFN, we chose the DPDA since it
is most illustrative of how an actual implementation of the
DFN’s semantics in a framework could work.

7. Conclusions

In this paper, we described the formal semantics of the
Dialog Flow Notation’s core features, which can serve as
an authoritative basis for tool developers who need to rea-
son formally about such dialog ow speci cations in the
process of validating or executing them. Using examples
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from a dialog editor-validator-controller tool chain, we have
shown the bene ts that such executable semantics provide
in terms of the clarity of corresponding implementations.

The semantics of the DFN features presented here can
also serve as a benchmark for the expressive power that any
new constructs will contribute: Depending on the formal-
ization level that will be required to de ne them (i.e. within
the visual syntax, the conceptual syntax or the behavioral
semantics), we can identify which features are mere syntac-
tic sugar and which add more expressive power, and thus get
an indication of the complexity of the necessary validation
and execution logic.

Since a web application cannot be completely speci ed
in terms of its dialog ow only, we have previously intro-
duced additions to the notation for specifying the presenta-
tion rules for dialog masks on different devices [6], as well
as for specifying data ows between presentation and ap-
plication logic [7]. We are currently integrating the formal
semantics of those modeling perspectives with the naviga-
tion model described in this paper.

As we have shown, the DFN’s formal semantics are use-
ful for the implementation of tools on a wide range of plat-
forms ranging from Java Servlet containers to Prolog the-
orem provers. In our continuing work, we will investigate
the applicability of these semantics to other execution envi-
ronments for dialog-intensive applications. Besides consid-
ering established platforms for web-based applications such
as PHP, Ruby etc., we are especially interested in applying
these semantics to other interaction paradigms (as enabled
by AJAX) or architectural patterns (e.g. Rich Internet Ap-
plications, distributed or mobile services etc.), and examin-
ing the feasibility of their ef cient implementation based on
the same formal model.
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