
Combining Scalability and Expressivity in the Automatic Composition of
Semantic Web Services

Jörg Hoffmann and Ingo Weber
SAP Research, Karlsruhe, Germany

〈first〉.〈last〉@sap.com

James Scicluna
University of Innsbruck, STI, Austria

james.scicluna@sti2.at

Tomasz Kaczmarek
Poznan University of Economics, Poland

t.kaczmarek@kie.ae.poznan.pl

Anupriya Ankolekar
HP Labs Palo Alto

anupriya.ankolekar@hp.com

Abstract

Automatic web service composition (WSC) is a key com-
ponent of flexible SOAs. We address WSC at the pro-
file/capability level, where preconditions and effects of ser-
vices are described in an ontology. In its most expressive
formulation, WSC has two sources of complexity: (A) a
combinatorial explosion of the services composition space,
and (B) worst-case exponential reasoning is needed to de-
termine whether the underlying ontology implies that a par-
ticular composition is a solution. Any WSC technology must
hence choose a trade-off between scalability and expressiv-
ity. We devise new methods for finding better trade-offs. We
address (A) by techniques for the automatic generation of
heuristic functions. We address (B) by approximate reason-
ing techniques for the fully expressive case, and by identi-
fying a sub-class where the required reasoning is tractable.
We show empirically that our approach scales gracefully to
large pools of pre-discovered services, in several test cases.

1 Introduction

In service-oriented architectures, a core operation is web
service composition (WSC): combining existing services
such that they provide a new desired functionality. Support-
ing this operation is very important for the flexibility and
sustainability of service-oriented architectures. We facili-
tate WSC for flexible Business Process Management [24]
by developing a tool for automatic WSC, integrating the
tool within a comprehensive modelling environment and
recommending service compositions to the modeler. For
this to be successful, the WSC tool must be both suffi-
ciently expressive (for powerful modelling) and sufficiently
fast (for good response times).

Figure 1. A schematic overview of WSC.

The WSC problem is illustrated in Figure 1. To en-
able automation, WSC requires web services to be adver-
tised with a description of their functionality, i.e., WSC, in
the form we consider here, requires semantic web services
(SWS). At the so-called profile/capability level, typical SWS
approaches such as OWL-S (e.g. [1, 6]) and WSMO (e.g.
[8]) describe SWS akin to AI planning formalisms, speci-
fying their input/output parameters, preconditions, and ef-
fects. These attributes of SWS are described within an on-
tology, which formalizes the underlying domain. This kind
of WSC has two significant sources of complexity:

• (A) Combinatorial explosion of possible composi-
tions. There are exponentially many possible com-
binations of SWS from the pool. This is particularly
challenging since the pool may be large in practice.
Note here that we assume that SWS discovery has al-
ready taken place, yielding the pool. The outcome of
discovery is large, e.g., when many SWS with similar
functionalities can be found. Our experiments simulate

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.8

98

this situation.

• (B) Worst-case exponential reasoning. To test
whether a given combination of SWS is a solution, one
must compute the potential outcome of executing the
SWS. In the presence of an ontology, this brings about
the “frame” and “ramification” problems: the SWS ef-
fects may have further implications due to the domain
behavior specified in the ontology; it must be deter-
mined what those implications are, and whether they
affect any of the things that were true before. E.g., if a
SWS effect says that an entity c is no longer a member
of a concept A, then as an implication c is neither a
member of any sub-concept of A anymore. In general,
reasoning is needed. In particular, to address the frame
problem one needs a notion of minimal change – the
outcome state should not differ unnecessarily from the
previous state (e.g. a credit card not used by a SWS
booking should remain unaffected). Figuring out what
is minimal and what is not adds another level of com-
plexity to the required reasoning, and so this reasoning
is harder than reasoning in the underlying ontology it-
self [10].

Given this complexity, it is clearly important to look for
good trade-offs between expressivity and scalability. We
address (A) by heuristic search (more below). Regarding
(B), this problem is closely related to what AI calls “belief
update” (e.g. [25, 10]), and we will henceforth refer to the
reasoning required for computing the outcome of SWS ex-
ecution as update reasoning. Many existing approaches to
WSC (e.g. [21, 17, 20, 2, 23]) simply ignore the ontology,
i.e., they act as if no constraints on the domain behavior
were given. Most other approaches (e.g. [9, 22, 16, 14])
employ full-scale general reasoners, and suffer from the in-
evitable performance deficiencies. The middle ground be-
tween these two extremes is relatively unexplored but for
[7], which devises a method restricting the ontology to be a
subsumption hierarchy and [11], which identifies an inter-
esting fragment of description logics (DL-Lite) where up-
date reasoning is tractable, but they do not develop an ac-
tual WSC tool. In our work, we develop such a tool for a
class of ontologies related to DL-Lite; further, we address
the fully general case by devising approximate update rea-
soning techniques.

Our WSC algorithm, Figure 2, uses heuristic search
[18], a well known technique for dealing with combina-
torial search spaces. The algorithm performs a kind of
“forward search”, in a space of states s corresponding
to different situations during the execution of the vari-
ous possible compositions. The key ingredients are the
reasoning-startstate, reasoning-resultstate, and is-solution
procedures, maintaining the search states and detecting so-
lutions; and the heuristic-function procedure, taking a state
and returning a solution distance estimate h as well as a set

s0 := reasoning-startstate()
(h,H) := heuristic-function(s0)
open-list := 〈(s0, h,H)〉;
while TRUE do

(s, h,H) := remove-front(open-list)
if is-solution(s) then return path leading to s;
for all applicable calls a of SWS in H do

s′ := reasoning-resultstate(s, a)
(h′,H ′) := heuristic-function(s′);
insert-ordered-by-increasing-h(open-list,s′,h′,H ′);

Figure 2. The main loop of our WSC algo-
rithm.

H of promising web services. The states are ordered by
increasing h (a standard method called “best-first-search”
[18]). The set H is used for filtering the explored SWS
calls. We will see that both h and H , and especially their
combination, bring huge scalability gains.

We base our work on a natural formalism for WSC, with
a semantics following the possible models approach (PMA)
[25]. The PMA addresses the frame and ramification prob-
lems via a widely adopted notion of minimal change; it un-
derlies all recent work on formal semantics for WSC (e.g.
[15, 4, 11]). Our technical contributions are:

• We develop the heuristic-function procedure above, by
suitably adapting AI Planning techniques [12].1 This
has been attempted for WSC only in a single research
effort [16] as yet. Going beyond that work, and beyond
all related work in planning, ours is the first technology
that takes domain knowledge, as given in the ontology,
into account in the heuristic.

• We show that, if the ontology specifies binary clauses
only, then update reasoning is tractable. Note that this
is not self-evident from the fact that reasoning over bi-
nary clauses is tractable: e.g. it is known [10] that, for
Horn clauses, update reasoning is not tractable. Binary
clauses are related to, but not a subset or superset of,
DL-Lite (details in Section 6).

• We open up a new way to more fine grained trade-offs
between expressivity and scalability: approximate up-
date reasoning. Instead of restricting the ontology up
to a point where update reasoning is tractable, we pro-
pose to approximate the update reasoning itself. We

1For the reader not familiar with the field of AI Planning, we remark
that this kind of heuristic function, used in a forward search as per Figure 2,
is since almost a decade by far the most successful method in planning. In
particular, in almost all known benchmark domains it is far more efficient
than, e.g., approaches based on Graphplan [5] or partial-order planning
[19].

99

identify certain properties of updates that can be ex-
ploited to design techniques for under-approximation
and over-approximation. We show how either of
soundness or completeness can be guaranteed by in-
terleaving both approximations. Empirical exploration
of these techniques is beyond the scope of this paper,
but forms a promising topic for future research.

• Web service outputs are naturally modelled as new on-
tology instances: e.g., if a service makes a flight reser-
vation, then this is modelled as a new instance of the
respective concept. Previous WSC tools (e.g. [16])
have taken the same approach, but were limited to con-
sider pre-fixed sets of “potential” outputs. By contrast,
our algorithms keep track of on-the-fly creation of out-
puts.

We implemented our algorithms, for the case of binary
clauses, in a WSC tool. We run experiments on two test
cases one of which stems from a case study in the telecom-
munications sector. The results show how our heuristic and
filtering techniques enable us to scale to large SWS pools.

Sections 2, 3, and 4 respectively introduce our WSC for-
malism, update reasoning algorithms, and heuristic func-
tion. Empirical results are in Section 5. Related work is dis-
cussed in Section 6, and Section 7 concludes. To improve
accessibility, many technicalities – including in particular
all proofs as well as the details regarding approximate up-
date reasoning – are moved into a longer TR [13].

2 Formalizing WSC

We introduce a formalism for WSC, denoted WSC. The
input/output behavior of SWS maps to input/output param-
eters, on which preconditions and effects are specified. This
closely follows the specification of SWS at the OWL-S “ser-
vice profile” level and at the WSMO “service capability”
level. We first introduce the syntax, then the semantics. For
space reasons, we limit both to what is necessary to under-
stand our contribution.

We use standard terminology from logics, with predi-
cates G,H, I , variables x, y, and constants c, d, e (ontol-
ogy “instances”); equality is a “built-in” predicate. Literals
are possibly negated predicates whose arguments are vari-
ables or constants; if all arguments are constants, the literal
is ground. Given a set X of variables, we denote by LX

the set of all literals which use only variables from X . If
l is a literal, we write l[X] to indicate that l uses variables
X . If X = {x1, . . . , xk} and C = {c1, . . . , ck}, then by
l[c1, . . . , ck/x1, . . . , xk] we denote the substitution, abbre-
viated l[C]. In the same way, we use the substitution nota-
tion for any construct involving variables. By l, we denote
the inverse of literal l. If L is a set of literals, then L denotes
{l | l ∈ L}, and

∧
L denotes

∧
l∈L l.

An ontology Ω is a pair (P,Φ) where P is a set of
predicates and Φ is a conjunction of closed first-order for-
mulas. We call Φ a theory. A clause is a disjunction
of literals with universal quantification on the outside, e.g.
∀x.¬G(x)∨H(x)∨ I(x). A clause is Horn if it contains at
most one positive literal. A clause is binary if it contains at
most two literals. Φ is Horn/binary if it is a conjunction of
Horn/binary clauses. Note that binary clauses can be used
to specify many common ontology properties such as sub-
sumption relations ∀x.G(x) ⇒ H(x) (φ ⇒ ψ abbreviates
¬φ ∨ ψ), attribute image type restrictions ∀x, y.G(x, y) ⇒
H(y), and role symmetry ∀x, y.G(x, y) ⇒ G(y, x). An
example of a property that is Horn (but not binary) is role
transitivity, ∀x, y, z.G(x, y) ∧G(y, z) ⇒ G(x, z).

A web service w is a tuple (Xw, prew, Yw, effw), where
Xw, Yw are sets of variables, prew is a conjunction of lit-
erals from LXw , and effw is a conjunction of literals from
LXw∪Yw . I.e., Xw are the inputs and Yw the outputs, i.e.,
the new constants created by the web service; prew is the
precondition, effw the effect (sometimes referred to as the
postcondition in the literature). Before a web service can
be applied, its inputs and outputs must be instantiated with
constants, yielding a service; to avoid confusion with the
search states s, we refer to services as (web service) ap-
plications, denoted with a. Formally, for a web service
(X, pre, Y, eff) and tuples of constants Ca and Ea, a ser-
vice a is given by (prea, effa) = (pre, eff)[Ca/X,Ea/Y].
The web service’s inputs are instantiated with Ca, and its
outputs are instantiated with Ea.

Tasks are tuples (Ω,W,U), i.e., the collection of all as-
pects relevant to a specific composition request. Ω is an on-
tology and W is a set of web services. U is the user require-
ment, a pair (preU , effU) of precondition and effect. By CU ,
we will denote a set of constants corresponding to the vari-
ables of the user requirement precondition. These will be
the only constants taken to exist initially. In other words,
these variables become “generic constants” about which we
know only the user requirement precondition; we want to
apply web services from W to reach a situation where an
appropriate instantiation of the variables in effU is guaran-
teed to exist.

The semantics of our formalism relies on a notion of be-
liefs, where each belief is a set of models. A “model” cor-
responds to a particular situation during the execution of a
composition. Now, since the precondition of the user re-
quirement does not completely describe every aspect of the
status of the ontology instances, several models are possible
initially. Similarly, since web service effects do not com-
pletely describe every aspect of the changes they imply, ex-
ecuting a web service can result in several possible models.
This uncertainty about the actual situation is formalized in
terms of beliefs, containing the entire set of models possible
at a given point in time.

100

Models m are pairs (Cm, Im) where Cm is the set of
constants that exist, and Im is the interpretation of the pred-
icates over these constants. By m |= φ for a closed first-
order formula φ, we mean that Im |= φ where the quanti-
fiers in φ range over Cm. The initial belief b0 is undefined if
Φ∧preU is not satisfiable; else, b0 := {m | Cm = CU ,m |=
Φ∧ preU}. A solved belief is a belief b s.t. there exists a tu-
ple C of constants s.t., for all m ∈ b, m |= effU [C]. The
core definition states how services affect models; we adopt
this definition from the widely used PMA semantics [25].
Assume a model m and a service a. The result of applying
a to w is res(m,a) :=

{(C ′, I ′) | C ′ = Cm ∪ Ea, I
′ ∈ min(m,C ′,Φ ∧ effa)}

Here, min(m,C ′, φ) is the set of all C ′-interpretations that
satisfy φ and that are minimal with respect to the partial
order defined by I1 ≤ I2 :iff for all propositions p over Cm,
if I2(p) = Im(p) then I1(p) = Im(p). In words, a C ′-
interpretation is in min(m,C ′, φ) iff it satisfies φ, and is as
close to m as possible. To illustrate this definition, consider
the following informal example.

Example 1 Let p, q, r be propositions, Φ = ¬p ∨ ¬q ∨ ¬r.
Let m be a model where p = 1, q = 1, r = 0. Let a be a
service with precondition p ∧ q and effect r. What happens
if we apply a to m?

If we simply set r = 1, the model we get is p = 1, q =
1, r = 1. This model is inconsistent with Φ. The PMA
resolves this inconsistency by making changes to what we
inherited from m. Namely, p and q are not mentioned by
the effect; their values are inherited. Setting one of them to
0 resolves the conflict; if we set both to 0, then the change
to m is not minimal. Hence we get two resulting models:
p = 0, q = 1, r = 1 and p = 1, q = 0, r = 1.

As stated, the PMA is used in all recent works on for-
mal semantics for WSC (e.g. [15, 4, 11]). Alternative belief
update semantics from the AI literature could be used in
principle; this is a topic for future work.

We say that a is applicable tom ifCa ⊆ Cm,m |= prea,
and res(m,a) �= ∅: the inputs exist, the precondition
holds, and the result is not empty (the result is empty in
case of unresolvable conflicts between effa and Φ). As-
sume a belief b. If a is applicable to all m ∈ b, then
res(b, a) :=

⋃
m∈b res(m,a); else, res(b, a) is undefined.2

The res function is extended to sequences 〈a1, . . . , an〉 in
the obvious way. A solution for b is a sequence �a s.t.
res(b,�a) is a solved belief; a solution for b0 is a solution
for the task.

2Requiring that a is applicable to all m ∈ b corresponds to what is
usually called plug-in matches: the ontology implies that a is always ap-
plicable. A more general notion are partial matches, where a is applicable
to at least one m ∈ b. We do not consider partial matches because, for
them, update reasoning is coNP-complete even with empty Φ.

3 Update Reasoning

We now specify what the search states s from Figure 2
(c.f. Section 1) are, and how they are maintained. We first
explain the basic aspects of our search; then we discuss the
difficulties with unrestricted Φ, and with Horn Φ; then we
show that binary Φ can be dealt with efficiently; then we
summarize our approximations for the general case.

Our approach is based on forward search. We search for
a solution in the space of beliefs b that can be reached by
chaining services starting from b0. The elementary steps in
such a search are: testing whether a belief b is a solution;
testing whether a service a is applicable to a belief b; and
computing the outcome res(b, a) of such a service. The
question arises: How do we represent beliefs? And even:
Which aspects of the beliefs do we represent?

Herein, we focus on methods that maintain only a par-
tial knowledge about the beliefs b. The obvious advantage
is that we avoid the prize for exact representation of beliefs
(each of which may contain exponentially many models);
the disadvantage is that such methods are not always appli-
cable, or may sacrifice some precision. Note that maintain-
ing the existing constants is easy. Since every modelm ∈ b0
has Cm = CU , and since every service adds the same new
constants to each model, we have that Cm = Cm′ for every
m,m′ ∈ b for every reachable b. We will hence ignore this
issue for the remainder of this section, and concentrate fully
on the interpretations, Im.

The minimum knowledge we need to maintain about
each b is the set of literals that are true in all models of
b,

⋂
m∈b{l | Im |= l} =: Lits(b). Based on Lits(b), we

can determine whether a is applicable, namely iff prea ⊆
Lits(b), and whether b is solved, namely iff there exists
C s.t. effU [C] ⊆ Lits(b). So we define the search states s
from Figure 2 as pairs (Cs, Ls); if b is the belief reached via
the same service sequence, then we want to have Cs = Cm

for m ∈ b, and Ls = Lits(b).
How do we maintain those s? There are two bad news.

The first of those is that computing Lits(res(b, a)) is hard,
even if Φ is Horn; this can be proved based on earlier work
in the area of belief update [10]:3

Theorem 1 Assume a WSC task (Ω,W,U) with fixed ar-
ity. Assume a model m, a service a, and a literal l such
that m |= l. It is Πp

2-complete to decide whether l ∈
Lits(res(m,a)). If Φ is Horn, then the same decision is
coNP-complete.

So, even if we are considering only a single model m,
it requires exponential effort to determine Lits(res(m,a)).

3By fixed arity, we mean a constant upper bound on predicate arity,
on the number of input/output parameters of any web service, and on the
depth of quantifier nesting within Φ. This is a reasonable restriction in
practice; e.g., predicate arity is at most 2 in DL.

101

Note here that each decision problem (general/Horn) has
worse complexity than reasoning in the respective fragment
of logics. Further:

Theorem 2 There exist a WSC task (Ω,W,U) where Φ is
Horn, a service a, and two beliefs b and b′ so that Lits(b) =
Lits(b′), but Lits(res(b, a)) �= Lits(res(b′, a)).

This is because it can happen that b �= {m | m |= Φ ∧
Lits(b)}. So, even if we had an oracle computing belief
updates, Ls = Lits(b) would not always provide enough
information for that computation.

The good news is: if we consider binary clauses instead
of Horn clauses, then the difficulties disappear. This can
be shown through a series of technical observations. The
core observation characterizes the situation where a literal
l ∈ Lits(b) “disappears”:

Lemma 1 Assume a WSC task (Ω,W,U). Assume a be-
lief b, a service a, and a literal l ∈ Lits(b). Then,
l �∈ Lits(res(b, a)) iff there exists a set L0 of literals satis-
fied by a modelm ∈ b, such that Φ∧effa∧

∧
L0 is satisfiable

and Φ ∧ effa ∧ ∧
L0 ∧ l is unsatisfiable.

From this lemma, it is not difficult to conclude that, with
binary Φ, a literal disappears only if its opposite is neces-
sarily true, i.e., if l ∈ Lits(b) but l �∈ Lits(res(b, a)), then
Φ ∧ effa |= l. A relatively easy observation is that, for any
Φ, if l �∈ Lits(b) but l ∈ Lits(res(b, a)), then Φ∧effa |= l.
We get:

Theorem 3 Assume a WSC task (Ω,W,U) with fixed ar-
ity, where Φ is binary. Assume a belief b, and a service
a; let L := {l | Φ ∧ effa |= l}. Then Lits(res(b, a)) =
L ∪ (Lits(b) \ L). Given Lits(b), this can be computed in
time polynomial in the size of (Ω,W,U).

Theorem 3 corresponds directly to a way of dealing with
the states s from Figure 2: each s is a pair (Cs, Ls) as ex-
plained above; given a, we test whether prea ⊆ Ls; if so, we
compute (in polynomial time) L := {l | Φ ∧ effa |= l}, and
take the successor state to be (Cs ∪Ea, L ∪ (Lits(b) \ L))
where Ea denotes a’s output constants; we stop when we
found s so that ex. C ⊆ Cs s.t. effU [C] ⊆ Ls.

Of course, in practice it is necessary to deal with more
general ontologies, e.g. featuring arbitrary clauses. One
option is to sacrifice some precision by mapping Φ into a
more tractable case, e.g. projecting each clause into a bi-
nary clause. Such an approach, however, does not preserve
soundness – the returned solution may make use of con-
straints that do not hold – and neither does it preserve com-
pleteness – the task may only be solvable under weaker con-
straints.

It turns out one can preserve either of soundness or com-
pleteness by approximating dynamically instead of stati-
cally: instead of approximating the input to the composi-
tion, approximate the update reasoning that it performs.
Since the details of this approach are somewhat intricate,
they are removed from this paper, for the sake of acces-
sibility; they are available in [13]. In a nutshell, the ap-
proach works as follows. The algorithm now maintains
search states s = (Cs, L

−
s , L

+
s) – in difference to the pairs

(Cs, Ls) that we used before. Our approximate update al-
gorithm ensures that L−

s under-approximates Lits(b), i.e.,
L−

s ⊆ Lits(b), and thatL+
s over-approximatesLits(b), i.e.,

Lits(b) ⊆ L+
s . By virtue of these properties, if one tests

solutions and service applicability based on L−
s , then the

WSC tool is sound but incomplete; if one tests solutions
and service applicability based on L+

s , then the WSC tool
is complete but not sound. The approximate update guar-
antees the approximation properties by using L−

s and L+
s

as the basis for approximating either of the two sides of the
equivalence proved in Lemma 1.

4 Heuristic Function

We now present techniques to effectively navigate the
forward search. We develop a heuristic function (“h” in
Figure 2), as well as a filtering technique (“H” in Figure 2).
The heuristic function is inspired by successful techniques
from AI Planning [12]. The technical basis is an approxi-
mate WSC process, where the main approximation is to act
as if both a literal and its negation could be true at the same
time.4 Given a state s, the approximate WSC finds an ap-
proximate solution for s; h and H are then easily obtained
from the approximate solution. We will see that the ap-
proximate WSC is computationally cheap enough to make
its solution in every s feasible. Going beyond all previous
approximations of its kind, we show how the approximate
WSC can deal with ontologies, and with on-the-fly creation
of new constants. We consider the general case, arbitrary
Φ; our techniques for binary Φ are obtained from that in the
obvious way.

procedure heuristic-function(s)
(1) (tmax, C, L, A, S) := build-ACG(s)
(2) if tmax = ∞ then return (∞, ∅)
(3) 〈A0, . . . , At−1〉 := extract(tmax, C, L, A, S)

(4) return (
∑tmax−1

i=0 |Ai|, {w ∈ W | a ∈ A0 is based on w})

Figure 3. Heuristic function main control.

The approximate WSC consists of a forward step, build-
ACG, and of a backward step, extract. Figure 3 shows how

4Note that this approximation is much more severe than approximate
update reasoning as discussed in Section 3.

102

these are arranged. First, the forward step returns a tu-
ple (t, C, L,A, S). The meaning of this tuple will become
clear below; t is an estimation of how many steps it takes
to achieve effU , starting from s. If t = ∞ then we know
that effU cannot be reached from s, and we can prune s
from the search. Otherwise, the backward step, extract, is
called, returning an approximate solution 〈A0, . . . , At−1〉
where each Ai is a set of services. The heuristic function
returns the count of services as h, and the set of web ser-
vices participating in A0 as H .

procedure build-ACG(s)
/* s must contain information providing C and L */
(1) t := 0; C0 := C s.t. C ⊇ Cb; L0 := L s.t. L ⊇ Lits(b)
(2) while not ex. C ⊆ Ct s.t. effU [C] ⊆ Lt do
(3) create {e1

t+1, . . . , e
M
t+1} s.t. {e1

t+1, . . . , e
M
t+1} ∩ Ct = ∅

(4) Ct+1 := Ct ∪ {e1
t+1, . . . , e

M
t+1}; Lt+1 := Lt

(5) At := {w[C/Xw,(e1
t+1, . . . , e

|Yw|
t+1)/Yw] |

w ∈ W, C ⊆ Ct, prew[C] ⊆ Lt}
(6) for all a ∈ At do
(7) for all l
∈ Lt+1 s.t. Φ ∧ effa |= l do
(8) Lt+1 := Lt+1 ∪ {l}, S(l) := a
(9) if σe(Lt−K+1) = · · · = σe(Lt+1) then return ∞
(10) t := t + 1
(11) tmax := t
(12) return (tmax, C, L, A, S)

Figure 4. Building an ACG.

Figure 4 shows pseudo-code for build-ACG. The nota-
tions are as follows. Cb is the set of constants in the belief
(recall that all models within a belief share the same con-
stants, c.f. Section 3). M is the maximum number of out-
puts any web service has. K is the maximum over: 1; the
number of input variables of any web service whose pre-
condition contains inequality; and the number of variables
in effU if that contains inequality. The σe function maps any
ei
t generated in any layer t to a constant ei.

The algorithm builds a structure that we refer to as the
approximated composition graph (ACG) for s. The ACG is
a tuple (tmax, C, L,A, S) where:

• tmax is the number of time steps in the ACG. At each
time step t between 0 and tmax, the ACG represents an
approximation of what can be achieved within t steps.
tmax is the index of the highest time step built by the
algorithm. This either means that the ACG reached
effU (the user requirement effect) for the first time
at tmax; or that the ACG reached a fixpoint without
reaching effU , in which case tmax = ∞.

• C is a vector of sets of constants, indexed by time steps
t. Each Ct contains the set of constants that is consid-
ered reachable by the ACG, within t steps.

• L is a vector of sets of literals, indexed by time steps
t. Each Lt contains the set of literals that is consid-
ered reachable by the ACG, within t steps. If l ∈ Lt,
then the interpretation is that l can become known (true
in all models of a belief) within t steps. Lt may con-
tain both a literal and its negation; both are considered
reached, i.e., there is no handling of conflicts.

• A is a vector of sets of services, indexed by time steps
t. Each At is the set of services that is considered
reachable by the ACG, within t steps.

• S is a function from literals to services. The meaning
of S(l) = a is that, if t is the first time step where
l is reached in the ACG, then a can be used at time
t− 1 to achieve l at time t. S will be used to extract an
approximate solution.

Line (1) of Figure 4 initializes the ACG, in an obvious
way. Note that s is required to provide supersets of Cb and
Lits(b). With our techniques from Section 3, this will be
Cs and Ls for the case of binary clauses, where we have
Cs = Cb and Ls = Lits(b); it will be Cs and L+

s for the
general case and approximate update reasoning, where we
have Cs = Cb and L+

s ⊇ Lits(b). The ACG algorithm as
specified works with any representation of search states, as
long as appropriateC ⊇ Cb andL ⊇ Lits(b) can efficiently
be extracted from it.

Lines (2) to (10) loop until the goal is reached in Lt, or
until line (9) has stopped the algorithm. Each loop iteration
extends the ACG by another time step, t + 1. Lines (3) to
(5) set the constants at t + 1, and the services at t. This
is straightforward.; the only subtlety is the creation of new
constants, which we discuss below. Lines (6) to (8) include
all new literals that can be deduced from the effect of a ser-
vice in At; the S function is set accordingly.

Line (9) is a fixpoint test. The test is non-trivial in that it
takes the creation of new constants into account: since the
ACG creates a set of new constants at every time step, it
never reaches a fixpoint in the naive sense. However, we
can notice that all new constants behave exactly like the
old constants. If that is the case, then extending the ACG
further will not get us anywhere, unless some web service
(or the goal) requires several different constants with the
same properties. The latter is captured by K as explained
above; using the mapping σe, line (9) tests whether no rele-
vant progress has been made in the last K + 1 steps.

A remarkable trick used in build-ACG is its handling of
constants creation. We generate a fixed number of new con-
stants – the maximum number of outputs of any web ser-
vice – per ACG layer, and let all services output the same
constants. This saves us from exponential growth! If one
allows different output constants for each service, then the
number of constants may grow by a multiplicative factor in

103

each time step, and the ACG size is exponential in t. A sim-
ple example: there are two web services wGH and wHG,
the former with input x of concept G and output y of con-
cept H , the latter vice versa. There are 2 constants initially,
one in G one in H . At t = 0 we get one service for each
web service, and hence at t = 1 we get 2 new constants. At
t = 1 we get 2 services for each web service, at t = 2 we
get 4 new constants, etc. In this example the exponential
growth is obviously redundant, but that redundancy is far
from obvious in the general case.

Our ACG algorithm has all the desirable properties of an
over-approximation underlying a heuristic function:

Theorem 4 Assume a WSC task (Ω,W,U) with fixed ar-
ity. Assume a belief b and corresponding search state s.
Let n be the length of a shortest solution for b, or n = ∞
if there is no such solution. Then build-ACG(s) returns
tmax so that tmax ≤ n; if build-ACG(s) uses an oracle
for SAT, then it terminates in time polynomial in the size of
(Ω,W,U) and s.

Of course, we do not have an “oracle for SAT”. But if
Φ falls into a tractable fragment, such as Horn or binary Φ,
then the algorithm takes polynomial time.

Theorem 4 follows from three technical observations:
(A) If 〈a0, . . . , an−1〉 is a solution for b, then build-ACG(s)
run without line (9) returns tmax so that tmax ≤ n. (B)
If the condition tested in line (9) holds in iteration t, then,
continuing the algorithm, it will hold for all t′ > t. (C) The
number of time steps of the ACG is bound by an expression
exponential only in predicate arity.

By Theorem 4, we know that tmax is a lower bound on
solution distance. This is nice because algorithms such as
A* can use it to find provably shortest solutions [18]. How-
ever, we found that, using tmax as a heuristic function, A*
fails to solve any but the tiniest examples. We address this
problem by devising a different heuristic function: an ad-
ditional backward step is performed on the ACG, to ex-
tract an approximated solution, which delivers much better
search guidance in practice. The algorithm is straightfor-
ward, and we move it to [13] in order to spare the reader
some details. In a nutshell, the approximate solution ex-
traction chains backwards from the goal, using the S func-
tion to select supporting actions for sub-goal literals, and in-
serting action preconditions as new sub-goals. The selected
actions form the returned solution 〈A0, . . . , Atmax−1〉. We
remark that, in difference to tmax,

∑tmax−1
i=0 |Ai| is not a

lower bound on solution length: the function S commits
to a particular choice how to support a sub-goal, although
different combinations of such choices may result in dif-
ferent solutions. However, our empirical results confirm
that h :=

∑tmax−1
i=0 |Ai| and H := {w ∈ W | a ∈

A0 is based on w}) (c.f. Figure 3 deliver very useful search
guidance in practice.

5 Empirical Results

We implemented a tool handling binary clauses as per
Theorem 3, and computing heuristic (h) and filtering (H)
information as per Section 4. The implementation language
is Java. The tool accepts a set of SWS and user require-
ment descriptions in the WSMO formalism, specified in a
subset of the WSML language. Our experiments were run
on a laptop with a Pentium M CPU running at 2.0 GHz, re-
serving up to 1GB of main memory for the tool. To assess
the benefits of both heuristic techniques – h and H – we
experimented with all possible configurations: Blind uses
neither h nor H; Heuristic uses only h; Filtering uses only
H; Full uses both.

We created testbeds simulating the expected surround-
ing conditions of WSC in practice: we keep the size of the
solutions moderate; the parameter we scale is the size of
the SWS pool. This corresponds to the common intuition
about WSC, that solutions tend to be simple but finding the
right services to incorporate is difficult. Note that, as stated,
the SWS pool corresponds to the outcome of discovery.
Hence our scaling scenario addresses the case where many
SWS can be found and, without performing the actual com-
position, it is not possible to filter out those few SWS that
are actually needed. When discovering in a large environ-
ment, one would expect that many alternative implementa-
tions of each required functionality can be found; the alter-
native implementations are similar but not identical – like
different SWS offering flight connections. We simulate this
situation as follows. In addition to the SWS that are needed
for the solution, we add N additional “randomized” SWS
into the pool. All randomized SWS use (only) the origi-
nal ontology, and we generate them by randomly modify-
ing the original SWS. Say max is the maximum number of
literals appearing in the precondition/effect of any original
SWS. Then each of the N randomized SWS is generated
by, uniformly: choosing one of the original SWS; choosing
numbers 0 ≤ k, l ≤ max; choosing k literals to add to the
precondition; and choosing l literals to add to the effect.

We designed two test cases, called TPSA and VTA. The
latter is a variant of the well-known virtual travel agency,
where transport and accommodation etc. need to be booked
based on a trip request. TPSA comes from a use case in
the telecommunications sector5 and describes a scenario in
which a client requests a Voice over IP (VOIP) service. The
WSC task is to automatically compose a process setting up
the VOIP in the TP system. This process involves identi-
fying the required hardware, setting up the contract, saving
the contract within the CRM system, etc. The user require-
ment is to obtain an invoice confirming the activation of the

5This use case stems from Telekomunikacja Polska (TP) and is a part
of the SUPER Integrated Project (under the EU’s FP6), in the context of
Semantic Business Process Management.

104

VOIP. In both VTA and TPSA, the shortest solution con-
tains 7 web services.

Figure 5 shows our results, plotting runtime for the four
configurations over N , for one instance per each setting of
N . Note that the scale for TPSA is logarithmic to improve
readability. We applied a runtime cut-off of 10000 seconds.
(Blind actually ran overnight on TPSA with 20 randomized
SWS, without finding a solution). Note that the runtime
sometimes does not grow monotonically over N ; this is just
due to the randomization, and would disappear when taking
mean values over several runs.

The data clearly show that the heuristic techniques bring
a vast advantage over the blind search. We can also see
that the importance of the different techniques, solution dis-
tance estimation, h, or filtering, H , depends on the domain.
In TPSA, if H is used, we get linear runtime behavior and
the effect of h is only cosmetic. In VTA, on the other hand,
using only h (Heuristic) is much better than using only H
(Filtering). We also see in VTA that there can be synergy
in the combination of the two techniques: Full works vastly
better than any other configuration. In fact, this configu-
ration is more effective than Filtering in the this scenario
(VTA). This is due to the more parallel nature of the solu-
tion of the VTA setting, in contrast to the more sequential
TPSA solution, where the difference between Filtering and
Full is not so significant. I.e., there are several SWS in
VTA which could be executed in parallel, resulting in more
actions which are still to be considered after Filtering.

Due to the artificial nature of our randomized SWS, the
observed advantage of the heuristic techniques over blind
search might be more extreme than what one would get with
real large SWS pools (which do not yet exist). However, one
can reasonably expect that the overall patterns of behavior
will be similar.

A sensible comparison to alternate WSC tools is difficult
due to those tools’ widely disparate nature (beside being
technically challenging due to widely disparate input lan-
guages). We ran tests with the DLVK tool [9], which is
based on general reasoning (answer set programming). We
chose DLVK because it is publicly available, and its lan-
guage is expressive enough to handle our test cases. In fact,
DLVK allows more general Φ than our tool; so the ques-
tion answered by the experiment is whether our tool actu-
ally gains something, by giving up some expressivity. It
turns out that DLVK is much slower even than Blind. With
N = 0, DLVK takes 12 minutes for TPSA and 2 hours for
VTA. In both test cases, DLVK runs out of time for N ≥ 5.
These results should not be over-interpreted, since a direct
comparison between DLVK and our tool is unfair. But the
results certainly show that the trade-off between expressiv-
ity and scalability is important.

6 Related Work

One large difference of our work to almost all other
approaches to WSC is that we devise a heuristic function
guiding the search. There exists only a single other work,
namely [16], that adapts such a technique for WSC.6 [16]
is related to our work in that, like us, it is inspired by [12].
However: [16] do not take the ontology constraints Φ into
account in the heuristic function; they use a worst-case ex-
ponential reasoner to determine their search states, and they
explicitly enumerate the models in every belief; they restrict
the creation of new constants to a single one per ontology
concept; and they show results only for a single small ex-
ample task.

Another major difference of our work to almost all re-
lated works lies in our exploration of the trade-off be-
tween expressivity of Φ, and the required reasoning about
the consequences of applying web services. Many ap-
proaches act as if Φ is empty (e.g. [21, 17, 20, 2]), and most
other approaches employ full-scale general reasoners (e.g.
[9, 22, 16, 14]). To the best of our knowledge, the only
exceptions are [7] and [11].

In [7], the background ontology is a subsumption hier-
archy. This is compiled into intervals, where each interval
represents a concept and the contents are arranged to cor-
respond to the hierarchy. The intervals are used for match-
ing the web services during composition, where a notion of
“switches” is used to be able to construct solutions dealing
with partial matches. Search proceeds in a depth-first fash-
ion, with no heuristic information. Hence, by comparison
to our work, [7] uses a more general notion of matches, but
a more restrictive notion of ontologies, and lacks our tech-
niques for search guidance. A combination of both tech-
niques might be interesting to explore.

[11] investigates, in DL-Lite, what happens if instance
data is updated at the DL ABox level, and the updated be-
lief shall be represented as a new ABox. DL-Lite is more
powerful than our binary clauses in some aspects, and less
powerful in other aspects. All clauses (Φ statements) in DL-
Lite are binary. However, [11] allow unqualified existential
quantification, membership assertions (ABox literals) us-
ing variables, and updates involving general (constructed)
DL concepts. On the other hand, DL-Lite does not allow
clauses with two positive literals, DL-Lite TBoxes allow
literals on roles only if one of the 2 variables is existen-
tially quantified, and DL-Lite (like any DL) does not allow
predicates of arity greater than 2. Also, in difference to us,
[11] do not develop an actual WSC tool. Our heuristic tech-
niques are certainly compatible with (a subset of) DL-Lite
updates, and so an exciting topic remains to combine the
two, yielding scalable WSC technology for an interesting

6[14] follow a more limited approach, by compilation into actual plan-
ning formalisms.

105

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

Blind
Heuristic
Filtering

Full

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 50 100 150 200 250 300 350 400 450 500

Blind
Heuristic
Filtering

Full

Figure 5. Results for TPSA (left) and VTA (right). Runtime (y-axis, seconds) plotted over N (x-axis),
i.e., the number of randomized SWS. Note the logarithmic runtime scale for TPSA.

fragment of DL.

There exist other static compositional approaches which
usually imply encoding a composed solution using some
appropriate language. An example of such a language is
BPEL [3]. Needless to say, such static descriptions are not
adequate for automated composition as we envision in this
paper. We do believe however that solutions composed us-
ing semantic technologies can be linked to such static lan-
guages. A SWS is generally linked to an existing service
such as WSDL. This link is referred to as grounding. While
our tool does not deal with grounding so far, the transla-
tion of a found composition solution to an executable lan-
guage such as BPEL should be straight-forward – given the
groundings of the utilized SWS are specified. However, the
details may be tricky, and the success of an automatic gen-
eration of an executable process from a composition cannot
be guaranteed in general. Thus, testing and other means
of quality assurance are highly advisable in productive set-
tings.

7 Conclusion

Automatic WSC is a core feature of flexible service-
oriented architectures. Our implemented tool provides a
uniquely strong trade-off between expressivity and scalabil-
ity, in that it allows non-trivial ontologies without resorting
to worst-case exponential reasoning, and in that it success-
fully employs heuristic and filtering techniques.

In the near future, we will design methods tackling Busi-
ness Policies, and optimizing the QoS performance of the
composed service.

References

[1] A. Ankolekar et al. DAML-S: Web Service Description for
the Semantic Web. In International Semantic Web Confer-
ence, 2002.

[2] V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Kumar,
S. Mittal, and B. Srivastava. Synthy: A System for End to
End Composition of Web Services. Journal of Web Seman-
tics, 3(4), 2005.

[3] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guzar, N. Kartha,
C. K. Liu, R. Khalaf, D. König, M. Marin, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web
Services Business Process Execution Language. OASIS,
version 2.0 edition, 23rd Aug. 2006. Public Review Draft,
http://docs.oasis-open.org/wsbpel/2.0/.

[4] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter.
Integrating description logics and action formalisms: First
results. In Association for the Advancement of Artificial In-
telligence, 2005.

[5] A. L. Blum and M. L. Furst. Fast planning through plan-
ning graph analysis. Artificial Intelligence, 90(1-2):279–
298, 1997.

[6] T. O. S. Coalition. OWL-S, 2003.
[7] I. Constantinescu, B. Faltings, and W. Binder. Large scale,

type-compatible service composition. In International Con-
ference on Web Services, 2004.

[8] D. Fensel et al. Enabling Semantic Web Services: The Web
Service Modeling Ontology. Springer-Verlag, 2006.

[9] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A
logic programming approach to knowledge-state planning,
II: The DLVK system. Artificial Intelligence, 144(1-2):157–
211, 2003.

[10] T. Eiter and G. Gottlob. On the complexity of propositional
knowledge base revision, updates, and counterfactuals. Ar-
tificial Intelligence, 57(2-3):227–270, 1992.

[11] G. D. Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On
the update of DL ontologies at the instance level. In Associ-
ation for the Advancement of Artificial Intelligence, 2006.

106

[12] J. Hoffmann and B. Nebel. The FF planning system: Fast
plan generation through heuristic search. Journal of Artifi-
cial Intelligence Research, 2001.

[13] J. Hoffmann, I. Weber, J. Scicluna, T. Kaczmarek, and
A. Ankolekar. Combining scalability and expressivity
in the automatic composition of semantic web services,
2008. Available at http://members.deri.at/∼joergh/papers/tr-
icwe08.pdf.

[14] Z. Liu, A. Ranganathan, and A. Riabov. Planning for
message-oriented SWS composition. In Association for the
Advancement of Artificial Intelligence, 2007.

[15] C. Lutz and U. Sattler. A proposal for describing services
with DLs. In Description Logics, 2002.

[16] H. Meyer and M. Weske. Automated service composition
using heuristic search. In Business Process Management,
2006.

[17] S. Narayanan and S. McIlraith. Simulation, verification, au-
tomated composition of web services. In World Wide Web,
2002.

[18] J. Pearl. Heuristics. Morgan Kaufmann, 1983.
[19] J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete,

partial order planner for ADL. In Proceedings of the 3rd In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-92), pages 103–114, 1992.

[20] M. Pistore, P. Traverso, and P. Bertoli. Automated com-
position of web services by planning in asynchronous do-
mains. In International Conference on Automated Planning
and Scheduling, 2005.

[21] S. Ponnekanti and A. Fox. SWORD: A developer toolkit for
web services composition. In World Wide Web, 2002.

[22] E. Sirin and B. Parsia. Planning for semantic web services.
In International Semantic Web Conference, 2004.

[23] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.
Automated discovery, interaction and composition of se-
mantic web services. Journal of Web Semantics, 1(1):27–46,
2003.

[24] I. Weber, I. Markovic, and C. Drumm. A Conceptual Frame-
work for Composition in BPM. In Business Information Sys-
tems, 2007.

[25] M. Winslett. Reasoning about actions using a possible mod-
els approach. In Association for the Advancement of Artifi-
cial Intelligence, 1988.

107

