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Abstract 

 
An application based Service-Oriented Architecture 

(SOA) consists of an assembly of external services and 
the application is called as a composite service. A 
composite service could be implemented by other 
composite services hence the application could have a 
recursive structure, which is one of the features of SOA 
application. Securing an SOA application is an 
important non-functional requirement. However, 
specifying a security policy of a composite service is 
not so easy because the policy should keep the 
consistency with other policies of external services 
which are invoked in the process. We need the way to 
assure the consistency of policies, but the concrete way 
is not developed yet to specify a consistent policy for a 
composite service. Therefore, this paper proposes a 
security policy composition mechanism from existing 
policies of external services. Our contribution is 
creating a security policy of a composite service 
automatically based on predicate logic, with support 
for two approaches of policy composition: bottom-up 
and top-down. Also, we focus on three kinds of security 
policies, such as a Data Protection Policy, an Access 
Control Policy, and a Composite Process Policy, and 
propose the policy composition rules for each policy. 
Our mechanism makes it possible to validate the 
consistency of policies by inference without increasing 
a developer’s workload, even if a composite service 
has a recursive structure. 
 
1. Introduction 
 

Service-Oriented Architecture (SOA) is a concept of 
building applications by assembling services that are 
components of business functions. Typically, an SOA 
application is implemented as a composite service that 
invokes external services in the process. The process 
and service invocations are defined in a process 

language such as BPEL [1], and a user can rebuild an 
application by changing only the process definitions 
without updating the service implementations. The 
benefit of an SOA application is flexibility to adapt to 
changing business processes. 

SOA is convenient for satisfying functional 
requirements, but it is more difficult to satisfy the non-
functional requirements such as security. The security 
requirements are specified as security policies for a 
composite service, but actually the way to specify 
policies for the composite services is not discussed 
clearly. For example, when an application developer 
assembles existing services that have their own security 
policies, how can the composite policies be defined and 
assured so that there are no inconsistencies with those 
existing policies? Also, there are several kinds of 
security policies, such as for data protection and for 
access control, and hence we need to compose these 
policies separately to create policies for a composite 
service. Currently, a developer needs to define the 
composite policies by hand by referring to the policies 
of the external services invoked in the composite 
process. However it is very hard to complete a policy 
composition without any inconsistency, because the 
process definitions and security policies may be 
complex and it is not clear how to compose policies to 
maintain consistency. 

We propose a security policy composition 
mechanism to resolve these difficulties. Our approach 
is based on predicate logic, and generates a composite 
security policy by inference. We define the logic for 
the policy representation and composition process, and 
clarify the policy composition rules. In this paper, three 
kinds of security policies are discussed: Data 
Protection Policies, Access Control Policies, and 
Composite Process Policies. The composite process 
definitions written in BPEL and security policies 
written in WS-SecurityPolicy [2] are transformed into a 
logic representation, and they are executed as a prolog 
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program to infer a security policy for the process.  
Our mechanism can apply two approaches to 

generate a composite security policy: bottom-up or top-
down. The bottom-up policy composition can compose 
policies from existing policies for external services, 
and the consistent composite policies are generated by 
inference. In contrast, a developer can specify 
composite policies regardless of existing policies. Our 
mechanism verifies the specified security policies are 
consistent with the existing policies, and the developer 
can confirm that the specified composite policy will 
work properly. Our main contributions are the 
automatic composition and verification of security 
policies from existing XML representations while 
reducing the developer’s workload.  

The rest of this paper is organized as follows. 
Section 2 explains the motivating example of our study 
and clarifies the problems with policies for composite 
services. Section 3 provides definitions of composite 
services and their security policies. We propose our 
security policy composition architecture and 
composition rules in Section 4. The policy composition 
is demonstrated in Section 5. Section 6 provides related 
work and we conclude our study in Section 7. 
 
2. Motivating Example 

 
2.1. Scenario: Travel Reservation Service 
 

First, we explain the application scenario which 
motivated us to clarify the problem. The travel 
reservation service shown in Figure 1 is a composite 
service that consists of the process invoking the airline 
reservation service and the hotel reservation service, 
which are external services. These external services are 
invoked symmetrically in the process of the travel 
reservation. The external services could be also 
composite services which invokes other external 
services.  

Here we suppose that the travel reservation service 
must be secure. A security policy will be necessary 
such that the exchanged messages should be signed and 
encrypted, only an employee of the travel agency can 
invoke the service, and so on. However, both the airline 
reservation service and the hotel reservation service 
might have their own security polices. In this situation, 
to define a security policy for the composite service in 
a bottom-up way, the composite security policy and the 
external security policies should be consistent. This 
means that the policies of external services will also be 
satisfied as long as the composite policy is satisfied. In 
contrast to the bottom-up approach, we could define a 
composite security policy in a top-down approach. If a 

composite service developer assembles some existing 
services which have their own policies, then the 
developer could define a new policy for the overall 
composite service. In this top-down policy definition, it 
is not clear how we could validate if all of the security 
policies of the composite service and the invoked 
external services are consistent. 

The goal of this study is to provide a way to 
compose security policies for a composite service, so 
that the policies have no inconsistencies from either the 
bottom-up or the top-down perspective. In the next 
section, we clarify some possible inconsistencies in 
security policies that should be addressed by this work. 
 
2.2. Problems of Security Policies in 
Composite Processes 
 

We define three categories of security policies to 
focus on this study: (1) Data Protection Policies (DPP), 
(2) Access Control Policies (ACP), and (3) Composite 
Process Policies (CPP).  

A DPP is a security policy specifying how to protect 
exchanged data, i.e. data of “username” type should be 
signed and encrypted. An ACP defines which role has 
authority to invoke a service. The CPP is a special 
policy defined when services are assembled as a 
composite service. For example, a service developer 
could apply a constraint such as service A and service 
B should be executed by users who have different roles. 
The details of these policies are defined in Section 3.2, 
but here we explain the possible problems for these 
security policies. 

The problems for a composite security policy are 
the inconsistencies between a composite service policy 

Figure 1. Composite Service Example: 
Travel Reservation Service 
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and invoked external service policies. We clarify the 
inconsistencies to be resolved for each policy as 
follows: 
¾ DPP 

Data may be unprotected or less protected in a 
composite service even if the same data would need 
high protection in external services.  

¾ ACP 
If the external services specify authorized roles who 
can invoke the service, then those policies should 
be preserved in the composite service policy. For 
example, we cannot execute the composite service 
if the external service allows the user who has a 
roleA, but the composite service does not allow the 
user of roleA. 

¾ CPP 
If a CPP requires that external service A and 
service B should be executed by the separate roles, 
but these external services allow the same roles in 
both ACP of service A and service B, so these ACP 
are not conformed to the CPP. 
These inconsistencies of a composite service policy 

and external service policies would be common, and 
they seem to be resolved easy by a developer. However, 
if the external services that are invoked in the 
composite service process are implemented by other 
composite services, the problems are not easy. A 
developer should analyze the policies of external 
services recursively, and then resolve the 
inconsistencies manually by referring these policies. It 
is so hard to resolve them correctly because the 
composite service structure and policies might be 
complex and a developer could not be a security expert. 

We propose a logic-based approach to resolve these 
problems and provide a way to create consistent 
security policies for a composite service. We define 
logic of the policies, processes, and rules for policy 
compositions. This logic can be executed as a Prolog 
program, and the inference will provide the result if 
any inconsistencies exist in a composite service policy. 
Also, the inferences can lead to a correct policy if there 
are any inconsistencies in the process. 

 
3. Security Policies for Composite Services 
 
3.1. Composite Service Definition 
 

A composite service process which invokes external 
services can be represented using BPEL [1]. BPEL has 
great flexibility to express complicated invocations or 
conditions, so we focus on a typical process to simplify 
our presentation. Figure 2 shows a typical composite 
process expressed in BPEL representation and a 

corresponding diagram generated by the tool such as 
eclipse of BPEL project [4] or WebSphere Integration 
Developer [5]. The composite service process has both 
receive and reply actions. The incoming parameters are 
received at receive, and the outgoing parameters are 
returned at reply. Here we assume that the external 
services are invoked by symmetric invocation in the 
composite process. In this case, when a process invokes 
an external service, the process will not go on to the 
next action until it has received the response 
parameters from the external service. This kinds of 
invocation is represented using invoke actions. 

An assign action specifies copying a variable from a 
variable specified by a from element into a variable 
specified by a to element. Figure 2 has an assign action 
to copy from the result value of airlineResponse which 
is a response message of the airline reservation service, 
to the airlineReservationResult value of 
agencyResponse which is a response message of the 
travel reservation service. Here only one example of a 
variable assignment is shown, and Table 1 shows all of 
the services’ variables and variable assignments 
executed in the travel reservation service. The request 
variables of the travel reservation service are assigned 
to the request variables of the external services, and 
then the two external services, airline reservation 
service and hotel reservation service each return a true 
as a result value when the reservation succeeds. The 
result values are assigned to the response variables of 
the travel reservation service and returned to the client 
by the reply action.  

This process is a typical composite process in BPEL. 
In this study, we focus on this process that mainly 
involves these actions: receive, invoke, reply, and 
assign. The relations between the composite service 
variables and the external service variables are defined 
by assign actions as shown in Figure 2, and these 
relations are leveraged to create the security policies. In 
the next section, the three types of security policies we 
discuss in this study are explained. 

Table 1. Variable Assignments of Travel 
Reservation Process 
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3.2. Security Policy Types 
 

Here we define the security requirements that are 
discussed in this study, and specify the security policies 
for these security requirements. An SOA application 
consists of assemblies of services, and there are two 
types of services: an atomic service and a composite 
service. An atomic service is a service which does not 
invoke external services in the process. A composite 
service invokes external services in the process, and 
also consists of service assemblies. Here we classify 
the security policies in these types of services. 

A security policy for an atomic service is classified 
as a Data Protection Policy (DPP) and an Access 
Control Policy (ACP). The security policies for a 
composite service consist of a composite DPP and 
ACP of the atomic services, and a Composite Process 

Policy (CPP). A CPP has special requirements for a 
series of services in the composite process. Figure 3 
shows the security policy classification of atomic 
services and composite services. The following 
sections explain details of these security policies. 

 

 
 

3.2.1 Data Protection Policy. The Data Protection 
Policy (DPP) describes data protection, such as 
integrity or confidentiality, during message exchanges. 
Web Services Security (WS-Security) [3] can protect 
the messages exchanged between clients and providers 

Security Policies for Atomic Services
Composite Process 

Policy (CPP)
Data Protection Policy 

(DPP)
Access Control Policy 

(ACP)

Security Policies for Composite Services

Figure 3. Security Policy Classification 

Figure 2. A Travel Reservation Composite Process in BPEL 

<bpws:process ..>
…………….
<bpws:sequence name="Sequence">

<bpws:receive name="Receive" 
operation="getReservation" 
partnerLink="AgencyProcessInterface" 
portType="ns0:AgencyProcessInterface" 
variable="agencyRequest"/>

<bpws:flow name="ParallelActivities">
…

<bpws:invoke name="AirlineReservation" 
operation="reserveAirline" 
inputVariable="airlineRequest"
outputVariable="airlineResponse" 
partnerLink="AirlineProcessInterfacePartner" 
portType="ns1:AirlineProcessInterface">

</bpws:invoke>
…………..
<bpws:assign name="CopyAirlineResult">

….
<bpws:copy>
<bpws:from part="reserveAirlineResult" 

variable=“airlineResponse">
<bpws:query 

queryLanguage=".../REC-xpath- 19991116">
<![CDATA[/result]]></bpws:query>

</bpws:from>
<bpws:to part="getReservationResult" 

variable="agencyResponse">
<bpws:query
queryLanguage=".../REC-xpath-19991116">

<![CDATA[/airlineReservationResult]]>
</bpws:query>

</bpws:to>
</bpws:copy>
</bpws:assign>
…..
<bpws:reply name="Reply" operation="getReservation" 

partnerLink="AgencyProcessInterface" 
portType="ns0:AgencyProcessInterface" 
variable="agencyResponse">

…
</bpws:reply>

…
</bpws:flow>

</bpws:sequence>
</bpws:process>
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by using XML signature or XML encryption. Web 
Services Security Policy (WS-SecurityPolicy) [2] is a 
specification to express security policies for WS-
Security. Web Services is a typical technology to 
implement a service invocation, and therefore we 
assume that a DPP is a security policy written in WS-
SecurityPolicy. 

 Figure 4 is an example of the DPP written in WS-
SecurityPolicy. The security policy represents security 
requirements using a set of assertions which are XML 
elements to specific security properties.  For example, 
SignedParts element is one of security policy 
assertions for specifying the signed portion in the 
SOAP message. 

This policy requires a signature and encryption on a 
SOAP Body by using an X.509 certificate. The signed 
and encrypted portions in the SOAP message are 
specified by the SignedParts and EncryptedParts 
assertions, and these elements have a Body element in 
this example. In WS-SecurityPolicy, sets of algorithms 
are defined as algorithm suites assertions. This example 
specifies the Basic256 algorithm suite in the 
AlgorithmSuite assertion. The algorithms 
corresponding to Basic256 are defined in [2], where 
HmacSha1 algorithm is used for the signature method, 
and Sha1 algorithm is used for the digest method. 

In the XML signature and encryption, the key for 
the signature and encryption is represented as a security 
token, which is an XML element with security-related 
information. An X509 token is a security token for a 
Base64-encoded X.509 certificate. This policy has the 
X509Token assertion in the AsymmetricBinding 
assertion, which means an X509 security token is used 
for the signature and encryption of the SOAP Body. A 
ProtectTokens assertion requires a signature on the 
security token that was used to sign the SOAP Body. A 
SignedSupportingTokens assertion specifies a 
requirement of additional token, in this example a 
signed username token is required.  

This example specifies very simple requirements, 
but WS-SecurityPolicy is a quite complicated and 
flexible specification. For users without detailed 
knowledge of the related specifications, it is too 
difficult to understand all of the security requirements. 
 
3.2.2. Access Control Policy. The Access Control 
Policy (ACP) restricts who can access a service. For 
example, a travel reservation service should be invoked 
only by travel agency employees. This requirement is 
for a service operation itself, not for data. Therefore, an 
ACP is sets of an operation name and list of roles that 
are allowed to access the service. The ACP can be 
defined as follows: ACP := (operation name, role list). 
The ACP for the operation getReservation of the travel 
reservation service can be defined as (getReservation, 
[agencyEmp]), where agencyEmp is a role for a travel 
agency employee. 

As for a policy representation, there are standard 
specifications for ACPs. XACML [5] is a typical 
specification for access control policy, and we could 
use it for ACP. However we may need some extensions 
for XACML to express the ACP for a service itself. In 
this study, defining the expression of the ACP is not the 
main focus, so the representation of the ACP is not 
discussed here. 
 
3.2.3. Composite Process Policy. As for the security 
policy of a composite service, we can define a DPP and 
an ACP for a composite service in the same way as for 
an atomic service. Additionally, we need to introduce a 
process policy for a composite process itself: the 
Composite Process Policy (CPP). In this paper, we 
define the CPP to specify the following requirements: 

1. Special ACP for services invoked in a process 
2. Separation of Duties: Services which should be 

executed by different roles 
3. Order of services invoked in a process 

The CPP should be defined by a developer who 
assembles services or interpreted from the business 

Figure 4. Example of Data Protection Policy 
in WS-SecurityPolicy 

<!-- Endpoint Policy -->
<wsp:Policy ….>

<sp:AsymmetricBinding>
<sp:InitiatorToken>

<sp:X509Token />
</sp:InitiatorToken>
<sp:RecipientToken>

<sp:X509Token />
</sp:RecipientToken>
<sp:AlgorithmSuite>

<sp:Basic256 />
</sp:AlgorithmSuite>
<sp:IncludeTimestamp />
<sp:ProtectTokens />

</sp:AsymmetricBinding>
<sp:SignedSupportingTokens>

<sp:UsernameToken />
</sp:SignedSupportingTokens>

</wsp:Policy>

<!-- Message Policy -->
<wsp:All …>

<sp:SignedParts>
<sp:Body/>

</sp:SignedParts>
<sp:EncryptedParts>

<sp:Body/>
</sp:EncryptedParts>

</wsp:All>
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requirements. However, these requirements tend to be 
written as a document in a natural language. There is 
no standardized representation for CPP which can be 
processed by software such as XML. As with the ACP, 
the representation of CPP is out of the scope of this 
paper. 

This paper proposes a way to compose the security 
policies for a composite process from the policies of 
the external services invoked in the process. Our 
approach is based on predicate logic, and the policy 
composition rules are explained in the next section. 
 
4. Security Policy Composition 
 
4.1. Policy Composition Architecture 
 

First, we explain the basic idea of policy 
composition. An atomic service has two kinds of 
security policies, DPP and ACP. A DPP can be 
regarded as security properties for the data itself. For 
example, suppose that the travel reservation service 
requests a customer ID, and a security policy requires 
that the request message should be signed and 
encrypted by a high level algorithm. We regard this as 
signifying that the customer ID itself is highly 
confidential data, so another service which uses this 
customer ID should maintain the high security by using 
the same high level algorithm. Therefore, a DPP can be 
defined from the security properties of the data used in 
the composite service.  

The composition of the ACP is done in a similar 
way. An ACP defines requirements for a service 

operation itself, and then the ACP is considered as the 
properties of the service operation. We can say that an 
ACP for a composite service should be consistent with 
the properties of the operations of the atomic services.  

We define this idea in predicate logic to provide a 
policy composition mechanism by using inference. 
Figure 5 illustrates our policy composition architecture. 
Our system has three main technical points: (1) 
Transformation into logic from the composite process 
and policy representation, (2) DPP and ACP 
composition rules, and (3) CPP validation rule. The 
inputs are process definitions in BPEL, service 
descriptions of a composite service in WSDL, and DPP 
written in WS-SecurityPolicy, and they can be 
transformed into predicates in our system. The policy 
composition is executed by two inferences using the 
DPP and ACP composition rule, and the CPP 
validation rule. In the first inference, we can get a 
composite DPP and ACP without inconsistencies 
among the policies of external services. These 
composite DPP and ACP if they have no violations of 
the CPP. The inference results are transformed into a 
description in WSDL of a composite service attached a 
security policy written in WS-SecurityPolicy, and then 
we can generate the concrete composite security 
policies.  

In addition to this bottom-up policy composition, 
our system infers inconsistencies of composite policies 
from the top-down. If a security policy for a composite 
service is defined by a service developer, the composite 
policy can be used as an input to our system to check 
that there are no inconsistencies with the policies of the 

Figure 5. Security Policy Composition Architecture 

BPEL

Access Control 
Policy

Composite 
Process

Data 
Protection 

Policy

Access 
Control 
Policy

Composite 
Process 
Policy

Inputs

DPP / ACP
Composition

Rules

Composite 
Process Policy

WSDL
With DPP

Composite
ACP

Composite
DPP

Composite 
DPP

Valid
Comp ACP

Valid 
Comp DPP

CPP 
Validation

Rule

Security Policy Composition Engine

DPP and ACP Composition Engine

CPP Validation Engine

Composite
ACP

Outputs

XML

Natural
Language

Prolog
Facts

Prolog
Rules

91



atomic services. The two-way policy composition is an 
advantage of logic-based inference, and hence we take 
this approach for the security policy composition.  

The following sections show the definitions of 
predicates for security policies and composition rules. 
Due to limited space, we show only parts of the 
predicates. 
 
4.2. Process and Security Policies in Predicate 
Logic 
 

The DPP written in WS-SecurityPolicy is attached 
in WSDL, and the BPEL process representation 
imports WSDL of both the composite service and the 
external services. Our system transforms these WSDL, 
BPEL, and DPP into predicates that are used as Prolog 
facts in the policy composition inference. The 
following are parts of the predicates for WSDL, BPEL, 
and DPP. Here, uppercase letters show the types of 
variables. 
 
¾ WSDL 

portType(i:Inter, o:Operation).  
operation(o:Operation, req:RequestMsg,  

res:ResponseMsg). 
variable(req:RequestMsg, reqvar:List). 
variable(res:ResponseMsg, resvar:List). 

 
The predicates for WSDL are defined 

straightforwardly from the XML elements in WSDL. 
The predicate portType has an interface i and an 
operation o, and the operation o exchanges a request 
message req and a response message res. Each message 
consists of a list of variables defined by a list reqvar 
and a list resvar. 

 
¾ BPEL 

receive(name:String, o:Operation, pl:PartnerLink,  
pt:PortType, req:RequestMsg). 

invoke(name:string, o:Operation, pl:PartnerLink,  
pt:PortType, req:RequestMsg,  
res:ResponseMsg). 

reply(name:String, o:Operation, pl:PartnerLink,  
pt:PortType, res:ResponseMsg). 

assign(from:RequestMsg, fromvar:List,  
to:RequestMsg, tovar:List). 

link(source:Action, target:Action). 
 

We defined predicates for some actions in BPEL. 
The predicates receive, invoke, and reply are 
transformed from the corresponding actions. The 
variables in these predicates correspond to the 
attributes of an XML element for each action. Also, the 

variable assignment in the composite process is 
specified by the predicate assign, where the specified 
variable assignment from the variable fromvar of the 
message from is to the variable tovar of the message to. 
The predicate link means that an action source and an 
action target are linked directly in the process. There 
are no BPEL actions corresponding to the link, so the 
orders of actions which are specified in the composite 
process are transformed in the predicate link. 

 
¾ DPP 

dpp(m:Msg, sigIds:List, endIds:List, tokenIds:List,  
optionIds:List). 

signature(m:Msg, sigId:String, var:List,  
tokenId:String, calgo:C14NM,  
salgo:SigM, talgo:TransM, dalgo:DigM). 

encryption(m:Msg, endId:String, var:List,  
tokenId:String, kalgo:KeyEncM,  
dalgo:DataEncM). 

token(m:Msg, tokenId:String, t:TokenType). 
protectToken(m:Msg, optionId:String, sigId:String). 
signedSupportingToken(m:Msg, optionIId:String,  

tokenId:String). 
 

DPP predicates are transformed from the WS-
SecurityPolicy description. The WS-SecurityPolicy 
specification defines many security policy assertions to 
specify security requirements. However, by considering 
the WS-Security semantics, the security properties 
specified by WS-SecurityPolicy are classified into four 
types of security requirements: Signature, Encryption, 
Token, and OptionalRequirements. The predicate for 
DPP is dpp, which is applied to a message m and has Id 
lists for the four security requirements. The signature 
requirement is specified by a predicate signature, 
where sigId is the Id of this signature on a variable in a 
variable list var, and the tokenId is the Id of a security 
token used for this signature, using the canonicalization 
algorithm calgo, the signature algorithm salgo, the 
transform algorithm talgo, and the digest algorithm 
dalgo. Similarly, the predicate encryption is for the 
encryption requirements, where the key encryption 
algorithm is kalgo and the data encryption algorithm is 
dalgo. The predicate for the security token is token, 
which has variables for the token Id tokenId and the 
token type t, such as X509v3. Here, the token types 
must be predefined. In the WS-SecurityPolicy 
specification, there are many kinds of optional 
requirements. The two examples shown here are 
protectToken and signedSupportingToken. The 
predicate protectToken requires that a security token be 
used for the signature whose Id is sigId, which should 
also be signed by itself. The predicate 
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signedSupportingToken requires a signature on the 
security token whose Id is tokenId. Additional 
properties are not included due to the limited space, but 
our predicates are defined from the XML 
representation of WS-SecurityPolicy, so we can easily 
transform security policies into these predicates. 

We also defined the predicates for ACP and CPP.  
 
¾ ACP 

acp(name:String, roles:Set). 
available(name:String, o:Operation). 
role(roleName:String).  
level(role1:String, role2:String). 

 
The predicate acp is an access control policy named 

name and the roles in roles are allowed to access the 
service. The ACP named name is applied to the service 
operation o, which is specified by the predicate 
available, and therefore the roles in roles can access 
the service operation o. The role names are defined by 
the predicate role. If a role role2 has all of the rights to 
access the services for a role role1, we say that the role 
role2 is a higher level role than the role role1. This 
relationship between two roles can be specified by the 
predicate level. 

For a CPP, there are three kinds of process policies 
defined in Section 3.2, and they are specified in logic 
as follows: 

 
¾ CPP 

allowedRolesByProcess(o:Operation, roles:Set). 
sod(o1:Operation, o2:Operation). 
ordered(comp:Operation, o1:Operation, o2:Opreation). 

 
The first predicate allowedRolesByProcess specifies 

that the roles in roles can access the operation o in the 
composite process. The second predicate sod specifies 
that the operations o1 and o2 should be executed by 
different roles in the process. And the predicate 
ordered is an order of service operation invocation for 
the composite operation comp. It means the operation 
o1 should be invoked before the operation o2. 

We define these three security policies in predicate 
logic, and we can execute them as Prolog facts. The 
composite security policies are inferred from these 
facts by using the policy composition rules defined in 
the next section. 
 
4.3. Policy Composition Rules 
 

As shown in Figure 5, our system executes two 
inferences to compose a security policy. In the first 
inference, the composite DPPs and ACPs are generated 

and in the second inference, they are validated by using 
the CPP validation rule. This section describes the 
composition rules as logic for the three types of 
security policies. 
 
4.3.1. DPP composition. As explained in Section 4.2, 
the requirements of DPP are considered as data 
properties. Therefore, the composite DPP will be 
consistent with an external service DPP if the same 
security properties of variables used in both a 
composite service and an external service are 
equivalent. 
 
¾ DPP composition rule 

isIntegrityConsistent(comp:Operation, cVar:String,  
ext:Operation, eVar:String,  
calgo:C14NM, salgo:SigM,  
talgo:TransM, dalgo:DigM,  
t:TokenType) :- 

 assignedToVar(comp:Operation, cVar:String,  
ext:Operation, eVar:String), 

 requestIntegrity(ext:Operation, eVar:String,  
calgo:C14NM, salgo:SigM,  
talgo:TransM, dalgo:DigM,  
t:TokenType), 

not(requestIntegrity(comp:Operation, cVar:String,  
calgo:C14NM, salgo:SigM,  
talgo:TransM, dalgo:DigM,  
t:TokenType)). 

 
The predicate isIntegrityConsistent is a constraint 

for consistency of data integrity. It returns true when 
the variable cVar of the composite operation comp and 
the variable eVar of the external operation ext have the 
same signature requirements, where the 
canonicalization algorithm is calgo, the signature 
algorithm is salgo, the transform method is talgo, and 
the digest method is dalgo, and the security token t 
which is used for the signature. The predicate 
assignedToVar infers a variable assignment from cVar 
to eVar. Based on our idea of DPP composition, the 
security properties of the assigned variables should be 
consistent. The predicate requestIntegrity returns true 
if a variable requires integrity, and the two predicates 
requestIntegrity for both cVar and eVar should be true. 
However, the predicate isIntegrityConsistent has a 
contradiction with the requestIntegrity for cVar, so it 
should return false if the composite DPP is consistent 
with DPPs of external services.  

For the other DPP requirements, encryption and 
tokens, we define similar predicates, but they are 
omitted here due to the space limitations. 
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4.3.2. ACP composition. The ACP can be regarded as 
an operation property, so the composite ACP will be 
valid if properties of composite operation and external 
operations are consistent. 
 
¾ ACP composition rule 

isACPConsistent(comp:Operation, ext:Operation,  
roles:Set) :- 

 invokedOperation(comp:Operation, ext:Operation), 
 allowedRoles(ext:Operation, roles:Set), 
 not(allRolesIncluded(comp:Operation, roles:Set)). 

 
The predicate isACPConsistent is a constraint on the 

ACP’s consistency between the composite service 
operation comp and the external service operation ext. 
The predicate invokedOperation means that a 
composite operation comp invokes an external service 
operation ext in the process. The predicate 
allowedRoles signifies that the external service 
operation ext is allowed for the roles specified in roles. 
The composite and external ACPs are consistent if the 
roles allowed by ext are included in the roles allowed 
by comp. The predicate allRolesIncluded returns true 
when all of the roles in roles are included in the 
allowed roles list of comp. The predicate 
isACPConsistent returns false if the composite and 
external ACPs are consistent. When true is returned, 
we can redefine the consistent ACP by referring a 
counterexample.  
 
4.3.3. CPP validation. Here we define the constraints 
on CPP consistency for each of the three requirements 
defined in Section 3.2.3.  
 
¾ Validation rule for composite ACP 

isProcessACPSatisfied (o:Operation, roles:Set) :- 
allowedRolesByProcess(o:Operation, roles:Set), 
not(allowedRoles(o:Operation, roles:Set)). 

 
The predicate isProcessACPSatisfied returns false if 

the operation o is allowed for the roles in roles by both 
the composite ACP and the CPP. 

 
¾ Validation rule for Separation of Duties 

isSODSatisfied(o1:Operation, o2:Operation) :- 
sod(o1; Operation, o2; Operation),  
allowedRoles(o1: Operation, roles1:Set),  
allowedRoles(o2: Operation, roles2:Set), 
not(allMembersNotIncluded(role1:Set, role2:Set)). 

 
The predicate isSODSatisfied means that the 

allowed roles for operation o1 are in roles1 and for 
operation o2 are in roles2, and no roles are required for 

both roles1 and roles2 if a separation of duty policy is 
specified by the predicate sod. 

 
¾ Validation rule for order of services 

isOrderSatisfied(comp:Operation,  
p1:Process, p2:Process) :- 

ordered(comp:Operation, p1:Process, p2:Process),  
not(postInvokeProcess(comp:Operation,  

p1:Process, p2:Process)). 
 
The last predicate isOrderSatisfied is a rule to 

control the invocation order of the processes p1 and p2 
in the composite operation comp. This predicate returns 
false when p1 is invoked before p2 if the predicate 
ordered is specified in the CPP. 

We defined these constraints on policy consistency 
as rules to validate the composite DPP, ACP, and 
process. These predicates returns false when the rule is 
satisfied and invalid policies are shown as a 
counterexample when they return true. We can correct 
the invalid composite policy to satisfy the CPP 
validation rules by referring the counterexample.  

Thanks to the way Prolog inference works, our 
system can work for both the top-down and bottom-up 
policy composition approaches. The consistent 
composite policies are inferred using the bottom-up 
approach, and the composite policies can be validated 
using the top-down policy definition approach. Also, 
we can compose policies using the same predicates 
even if external services are also composite services, 
not atomic services. In the next section, policy 
composition is demonstrated for the travel reservation 
service shown in Section 2.1. 
 
5. Policy Composition Example 
 

We are proposing a logic-based approach for 
security policy composition, and define the facts and 
rules for composite policy inference. The core part of 
our system as shown in Figure 5 is the security policy 
composition engine which is implemented in Prolog. 
Here we demonstrate our policy composition results 
from the core engine for the travel reservation scenario 
of Section 2.1.  

In our system, composite process definitions and 
security policies for external services are assumed to be 
predefined and are transformed into the corresponding 
predicates. Here we give examples of the logic 
representation for the WSDL and BPEL of the 
composite process, the DPPs and the ACPs of the 
external services of the travel reservation service as 
follows. 
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Travel Reservation composite service 
¾ WSDL 

portType(agencyProcessInterface, getReservation). 
operation(getReservation, 

agencyRequest, agencyResponse). 
variable(agencyRequest, 

['agp:airlineInfo', 'agp:hotelInfo',  
'agp:customerID', 'agp:mileageNo',  
'agp:cardInfo']). 

variable(agencyResponse,  
['agp:airlineResult', 'agp:hotelResult']). 

¾ BPEL 
receive(receive, getReservation,  

agencyProcessInterfacePartner,  
agencyProcessInterface, agencyRequest). 

invoke(airlineReservation, reserveAirline,  
airlineProcessInterfacePartner,  
airlineProcessInterface, 
airlineRequest, airlineResponse). 

reply(reply, getReservation,  
agencyProcessInterfacePartner,  
agencyProcessInterface, agencyResponse). 

assign(agencyRequest, 'agp:mileageNo',  
airlineRequest, 'api:mileageNo'). 

link(receive, airlineReservation). 
 

Some predicates for the travel reservation composite 
service are shown here. These predicates are 
transformed from WSDL and BPEL. The WSDL 
description defines that the operation of the composite 
service, its portType and variables. The operation is 
getReservation which receives a message 
agencyRequest. The predicates for BPEL specify 
actions in the operation getReservation. The predicates 
invoke mean that the operation reserveAirline is 
invoked. The predicates link specifies that the action 
receive links to the action airlineReservation. This 
composite process has eight assign actions, and one of 
them is shown here. This predicate assign means that 
the variable ‘api:mileageNo’ in the message 
agencyRequest is assigned to the variable 
‘api:mlieageNo’ in the message airlineRequest. 

Here we show some predicate examples for the 
composite process, and similar predicates for external 
services, airlineReservation and hotelReservation 
services, are necessary. They are omitted due to the 
space limitations here. 
 
Airline Reservation service 
¾ DPP 

signature(airlineDpp, 'api:sigID1',  
['api:mileageNo', 'api:airlineInfo', 'api:cardInfo'],  
'api:x509ID', exc14n, hmacsha1, exc14n, sha1). 

token(airlineDpp, 'api:x509ID', x509V3). 
token(airlineDpp, 'api:unID', username). 
protectToken(airlineDpp, 'api:optionID1', 'api:sigID1'). 
signedSupportingToken(airlineDpp,  

'api:optionID2', ‘api:unID'). 
¾ ACP 

available(airlineACP, reserveAirline). 
acp(airlineACP, [agentEmp, airlineEmp]). 

 
Here a simplified DPP and ACP are defined for the 

external services to explain the policy composition 
example. The DPP of the airline reservation service 
specifies that all request variables should be signed 
with a signed X509v3 security token, and a signed 
username token is required. The service can be used by 
a user who has a role as an agentEmp and an 
airlineEmp. The variables and IDs are as specified in 
QName to distinguish among the variables of different 
services. 
 
Hotel Reservation service 
¾ DPP 

signature(hotelDpp, 'hpi:sigID1',  
['hpi:customerID', 'hpi:hotelInfo', 'hpi:cardInfo'], 
'hpi:samlID', exc14n, hmacsha1, exc14n, sha1). 

token(hotelDpp, 'hpi:samlID', saml). 
protectToken(hotelDpp, 'hpi:optionID1', 'hpi:sigID1'). 

¾ ACP 
available(hotelACP, reserveRoom). 
acp(hotelACP, [agentEmp, hotelEmp]). 

 
For the hotel reservation service, a similar DPP is 

defined. All of the request variables should be signed 
with a signed Saml security token. The service can be 
used by a user whose role is agentEmp and hotelEmp. 

To generate the integrity requirements for the 
composite DPP, the predicate isIntegrityConsistent is 
used. Six solutions are inferred for the composite 
service the travel reservation service. One of the 
solutions is: 
 

Comp = getReservation, CVar = 'agp:hotelInfo',  
Ext = reserveRoom, EVar = 'hpi:hotelInfo',  
C14NM = exc14n, SigM = hmacsha1,  
TransM = exc14n, DigM = sha1,  
TokenType = saml 

 
This solution can be interpreted as saying that the 

variable ‘agp:hotelInfo’ of the composite operation 
getReservation is equivalent to the variable 
‘hpi:hotelInfo’ of the external operation reserveRoom 
and these variables should be signed with a saml token 
and the inferred algorithms, i.e. the canonicalization 
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method and the transformation method are exclusive 
c14n, the signature method is HmacSha1, and the 
digest method is Sha1. The travel reservation service 
has six request variables, and the solutions correspond 
to each variable. The composite DPP will be generated 
by merging these solutions.  

We can infer the composite ACP by executing the 
predicate isACPConsistent. Here there are no allowed 
roles defined for the travel reservation service, and we 
can get lists of the required roles for the service. Two 
solutions are inferred, and one of them is: 
 

Comp = getReservation,  
Ext = reserveAirline,  
Roles = [agentEmp, airlineEmp] 

 
This solution means that the composite operation 

getReservation needs to be allowed for agentEmp and 
airlineEmp, which are roles in the ACP of the external 
operation reserveAirline. The composite service 
developer can correct the ACP of getReservation by 
referring to this solution. 

Here we demonstrated a security policy composition 
for a simple scenario which the external services are 
atomic, and it seems that we got just the results that 
were expected. However, the BPEL and WS-
SecurityPolicy representations are quite complex and it 
is quite hard for developers to understand them and 
compose the security policies by hand. Also, invoked 
external services could be also composite services. Our 
proposed system can handle recursive service 
invocations. Therefore, a developer only needs to think 
of the top-level composite service for the policy 
composition even if the invoked external services are 
also implemented by another composite service, which 
is one of the benefits of our approach. Our main 
contribution is assuring consistency of the security 
policies among the invoked external and composite 
services without increasing the developer’s workload.  

This is a first step in our study of security policy 
composition, so there are some limitations and 
remaining issues. Now we are focusing on some of the 
specific actions in BPEL processes, such as receive, 
invoke, replay, and assign. Our work so far assumes 
that the external services are invoked symmetrically, 
but asymmetric invocations are important in practice, 
especially for large applications. Our current 
implementation is a core policy composition engine, so 
it is necessary to extend the implementation to support 
the transformations between the XML representations 
of BPEL and WS-SecurityPolicy. We will work on 
these aspects in the future. 
 

6. Related Work 
 

We proposed a logic-based approach for security 
policy composition. There is some earlier work for 
Web Services Security and policy using logic-based 
approaches.  

Tziviskou and Nitto [7] proposed a formal 
specification for the requirements in WS-Security, and 
validate if the exchanged messages satisfy the 
requirements. Their approach is similar to ours, both in 
representing the security policy written using WS-
SecurityPolicy and in using predicate logic. However, 
the goal to be achieved is clearly different. They focus 
on comparisons between two policies or messages. In 
contrast, we propose security policy composition rules 
using logic, and validate the consistency of the invoked 
external policies and the composite policies. Lee et al. 
[8] also worked to compose security policies, and they 
apply the concept of logically defeasible events to test 
the security policies written in WS-SecurityPolicy. 
Their motivation is a policy composition for different 
departments, and the composition preferences need to 
be defined by the policy writers. In our approach, the 
policy composition rules are predefined and will be 
executed according to the BPEL process. The policy 
translation from XML representation into logic can be 
processed automatically, and therefore our approach 
can compose policies without the efforts of policy 
writers.  

There have been studies of policy representations 
using predicate logic, not only for WS-SecurityPolicy. 
Wang and Yuan [9] applied predicate logic to 
workflow security management. Their security policy 
focus is access control for a specific workflow, but the 
transformation from workflow into logic is not 
discussed in their work. Halpern and Weissman [10] 
proposed reasoning about policies by using first-order 
predicate logic. Their example of security policies are 
for access control policy to a document, and are 
simpler than our policies. Glasgow et al. [11] proposed 
a formal framework for security policy called Security 
Logic, and they apply modal logic to generic security 
policy considerations. Our work is more specific to 
SOA application security.  

Security policy composition has been studied in a 
variety of fields. Li et al. [12] studied policy 
consistency in Web service compositions written in 
BPEL, with motivations similar to ours. They studied 
privacy policies and approaches to validate policies in 
graph transformations. He and Yang [13] analyzed 
security policy integration between different 
application domains. They provide requirements for 
security integration and patterns. Their targeted policy 
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is access control policy, but they do not mention the 
concrete policy representation. Srivatsa el al. [14] 
presented an access control model and techniques for 
specifying and enforcing access control rules for Web 
service compositions. They introduced composite roles 
and principles and specify access control policies using 
pure-past linear temporal logic. Charfi and Mezini [15] 
proposed an aspect-oriented approach to specify 
security policies for Web service compositions. They 
implement a set of aspects in AO4BPEL which is an 
aspect-oriented extension to BPEL. Bertino et al. [16] 
proposed an extension of WS-BPEL syntax with an 
authorization model. They specify authorization 
information and constraints using XACML [5] for the 
BPEL process, and can specify the Separation of Duty 
as with our approach. There are many related projects 
discussing security policies for processes, especially 
access control policies. Our study supports three kinds 
of security policies: DPP, ACP, and CPP, which is one 
of our advantages. 

 
7. Conclusion 
 

This paper proposes a security policy composition 
mechanism for composite services. To define security 
policies for a composite service which invokes some 
external services in the process, we need to maintain 
consistency with the security policies of the external 
services. However, it is quite hard for developers to 
define composite policies by hand because the 
composition rules are not clear for maintaining 
consistency and the composite processes and policies 
are themselves complicated. We propose a logic-based 
approach to compose security policies automatically 
from a composite process definition and existing 
security policies of external services. The composite 
processes and policies are represented using predicate 
logic, and the composite policies are inferred according 
to the composition rules we defined. The advantage of 
this approach is that two composition approaches can 
be supported: bottom-up and top-down policy 
composition. Also, our approach can handle a 
composite service which has a recursive structure. We 
considered three kinds of security policies for 
composite services: DPP, ACP, and CPP. We 
demonstrated the policy composition approach using a 
travel reservation service, and showed that consistent 
policies are inferred by our approach. This technology 
can contribute to assure SOA application security 
without increasing the developer’s workload. In this 
study, some restrictions remain, such as 
implementations of transformations from concrete 

policy representations into predicates, and in 
supporting additional actions in BPEL, but we now 
begin work to address those restrictions. 
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