

A Catalogue of Refactorings for Navigation Models

Jordi Cabot
Universitat Oberta de Catalunya

Barcelona, Spain
jcabot@uoc.edu

Cristina Gómez

Universitat Politècnica de Catalunya
Barcelona, Spain

cristina@lsi.upc.edu

Abstract

The evolution of web applications (from read-only

applications for browsing the data to full-fledged
content-modification applications) has increased the
complexity of navigation models describing the set of
web pages included in a web application.. In this
paper, we propose adopting the refactoring technique
to reorganize and improve the quality of such models.
This technique was initially proposed to improve the
structure of source code without changing its external
observable behaviour. We adapt the refactoring
technique to the navigation models context and present
a catalogue of refactorings specific for this particular
kind of models.

1. Introduction

Many web development methods are evolving to

cover the definition of full-fledged web applications,
including data processing and manipulation
functionalities. As a consequence, the models involved
in the specification of a web application (i.e, the data
model to specify the data used by the application, the
navigation model to describe the organization of its
front-end interface and the presentation model to
personalize its graphical aspect) have been extended
with new modelling primitives.

The most relevant extensions are the addition of
read operations to indicate the data that must be shown
in a given page and content-management primitives to
denote the modifications to be applied on the database
(or in general, any kind of persistent storage) in
response to the user actions.

Including these new primitives in web models
increase their complexity. This is especially true for
navigation models. Even for small web applications,
navigation models can become very huge and complex,
which jeopardizes their quality. This is a critical issue
since the quality of navigation models has a direct
effect on the quality and maintainability of the final

web application, usually (semi-) automatically derived
from the web model designs.

This problem has been thoroughly studied for
object-oriented software systems with large amounts of
source code. In this field, the refactoring technique [1]
has been successfully proposed to improve the
structure and the quality of the code (resulting in a
simpler and more readable program). Refactoring is
“the process of changing an object-oriented software
system in such a way that it does not alter the external
behaviour of the code, yet improves its internal
structure” [2].

We believe that the same idea could help designers
to improve the internal structure of navigation models.
Therefore, in this paper we propose to adapt the
refactoring technique to a web context. For this
purpose we need to: 1 – reformulate the concept of
behaviour preservation for navigation models and 2 –
provide a meaningful catalogue of refactorings specific
for this kind of models.

With our proposal, designers will be able to
improve and restructure their navigation models with
the confidence that the evolved model is behaviour
preserving with respect to the initial one. In our
proposal, navigation models are formally represented
as directed graphs while refactorings are expressed as
graph transformation rules.

As far as we know, ours is the first approach to
formalize the application of refactorings (or, in general,
any set of behaviour preserving transformations) to
help in improving the quality of existing navigation
models. The notion of refactorings for web
applications has also been informally introduced in [3]
but there the key concept of behaviour preservation to
ensure the applicability of the refactorings is not
addressed. Additional related research is focused on
the definition of design patterns for navigation models,
known as navigation patterns (see [4], [5] as
examples). However, these navigation patterns are
aimed at guiding the process of manually creating new
navigation models from scratch and, in general, are not
presented in a formal way but just intuitively

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.14

75

described. Moreover, behavioural issues are not
usually included.

The rest of the paper is structured as follows.
Section 2 reviews some basic concepts. Section 3
formalizes our graph-based representation for
navigation models. Section 4 adapts the concept of
behaviour preserving to navigation models and Section
5 presents our catalogue of refactorings. Section 6
presents our tool support. Finally, Section 7 sketches
the requirements for an automatic refactoring
application and Section 8 presents some conclusions
and further work.

2. Basic Concepts of Navigation Models

A navigation model (also known as a hypertext

model) specifies the organization of the front-end
interface of a web application.

The main elements of navigation models are pages
and links. As an example, Fig. 2.1 shows a small
excerpt of a possible navigation model (in WebML [6])
for an e-commerce application. In particular, the model
shows the interface to create new sales and the related
sale lines.

Figure. 2.1. A fragment of a navigational model for an e-

commerce application

Pages may include several modelling constructs to
specify the page contents. In particular, pages may
include read operations over the underlying application
data. The result of these queries is used to dynamically
build the page contents at run-time. This requires the
navigation model to be strongly related with a
corresponding data model that specifies the
information managed by the web application. As an
example, a possible data model for the same e-
commerce application could be the one shown in Fig
2.2. The main constructs in data models are entity
types (i.e. classes), relationship types (i.e. associations)
and generalizations. An entity type ET describes the
common characteristics of a set of entities (i.e. objects)
of the domain. Each ET contains a set of attributes. A
binary relationship type RT has a name and two
participants, each one playing a certain role in the

relationship type. Each relationship (i.e. link) between
two participant entities represents a semantic
connection between them.

Figure. 2.2. A data model for the e-commerce application

We assume that navigation models may include a
single type of read operation: ReadET(att1…attn,
selector) that returns the att1,...,attn attribute values of
the entities of type ET satisfying the selector condition.
For instance, in Fig. 2.1, NewSaleLine retrieves the
names of available Products to help selecting the
product to buy. In the figure, this read operation is
specified as a WebML index unit with no selector
condition (retrieved attributes are not graphically
shown in WebML). A page may show information
from different entity types by combining several read
operations. Note that read operations are attached to
pages and not to links since it is during the process of
rendering the page when the data that must be shown
in the page is computed. However, links may carry
parameter values that restrict at run-time the data
retrieved by the read operation.

Additionally, many web modelling languages allow
defining navigation models with content-modification
operations (as inserts, updates and deletes) that are
executed as a result of browsing a link. As an example,
Fig. 2.1 shows that when the user navigates from
NewSale to NewSaleLine, the operation InsertSale is
executed (using the parameters provided by the user in
NewSale). The set of modification operations we
consider are: InsertET(x,v1,..,vn) (resp. DeleteET(x)) to
perform the addition (removal) of an instance x into
(from) the entity type ET (optionally, attributes of x
may be initialized with values v1,..,vn), UpdateAiET(x,
v) to set v as the new value of the attribute Ai in x and
InsertRT(x1,x2) (resp. DeleteRT(x1,x2)) to perform the
addition (removal) of the fact that objects x1,x2
participate in a link of RT.

Some languages admit the definition of more
complex operations either as part of the definition of
the data model (as in OOWS [7]) or in some additional
model (as in [8]). To cope with these operations, all
references to a complex operation op in the model are
replaced with the sequence of basic ones that appear in
the definition of op.

76

3. A Graph-based Representation for
Navigation Models

We propose a graph-based representation to

formally represent navigation models. This
representation facilitates an unambiguous definition of
our refactorings catalogue. Given a navigation model
N, the corresponding graph GN = (VN , AN) is obtained
by means of the following rules:

- Every page in N is a vertex in VN.
- Every link in N from a page X to a page Y

becomes an arc from X (i.e. from the vertex
representing X in GN) to Y in AN.

- The label of a vertex v stores the (possibly empty)
set of read operations associated to the page X
represented by v in GN.

- The label of an arc a stores the (possibly empty)
ordered sequence of modification operations
associated to the link l represented by a in GN.

Note that GN is a directed graph (digraph), since
being able to navigate from a page X to a page Y does
not imply that the navigation from Y to X is also
possible. Occasionally, GN turns out to be a multigraph
[9] since it may contain multiple arcs with the same
orientation between a pair of vertices v1 and v2. This
happens when the page corresponding to v1 contains
several links targeting the page represented by v2.

When information about which pages act as home
page/s for the web application is available in the input
navigation model, the corresponding vertices in the
graph are drawn using a dashed line. For the sake of
simplicity, information on the internal page layout and
structure is not represented in the graph.

Fig. 3.1 shows the graph corresponding to the
navigation model of Fig. 2.1.

InsertSale

New
SaleLine

New
Sale

Home
Page

InsertSaleLine
InsertComposedOf
InsertReferences

ReadProduct(name,true)

Figure. 3.1. Graph definition for the navigation model of
Fig. 2.1

We would like to remark that this graph-based
representation could be also used to verify basic
structural characteristics of the navigation model. For
instance, we could check if all pages are reachable
from the home page.

Alternative (more complex) representations of
navigation models express them by means of
statecharts [10] or using Petri-Nets (see [11] as a
relevant example).

4. Behaviour Preserving Navigation
Models

By definition, a refactoring should never alter the

external software behaviour. Unfortunately, a precise
definition of this behaviour preserving condition does
not exist [2].

The original definition [12] states that, for the same
set of input values, the same set of result values must
be returned before and after the refactoring. However,
this condition may be insufficient depending on the
application domain. On the other hand, it may also be
too strict since designers may prefer a more pragmatic
(though weaker) definition. In this sense, [13] proposes
a behaviour preserving condition that does not require
to ensure that all combinations of input values generate
the same output results after the refactoring but just to
check that all method calls are preserved by the
refactoring, that is, [13] defines that the behaviour is
preserved if the user can execute the same set of
methods before and after the refactoring.

According to this more pragmatic view, we define
that a refactoring for navigation models is behaviour
preserving when the kind of read and modification
operations the user may execute is maintained by the
refactoring. That is, it may not happen that after the
refactoring a user is able to query (or modify) the data
of an entity or relationship type that was not previously
available (and the other way around, if before the
refactoring a user could access/modify a model
element, the same kind of access/modification must be
allowed in the navigation model after the refactoring).
More formally:

Definition 4.1. A refactoring for a navigation model is
behaviour preserving when its read-behaviour and
update-behaviour preserving.

Definition 4.2. A refactoring r(N)→ N’ (where N is the
initial navigation model and N’ the navigation model
obtained once the refactoring r is applied over N) is
read-behaviour preserving when:

1. For each read operation r appearing in a vertex
v, v ∈ GN, there is a vertex v’, v’ ∈ GN’

 , that
includes a read operation r’ equal to r.

2. For each read operation r’ appearing in a vertex
v’, v’ ∈ GN’

, there is a vertex v, v ∈ GN , that
includes a read operation r equal to r’.

We consider that two read operations r1 and r2 are the
same operation iff r1 and r2 refer to the same entity type
and the set of attributes retrieved in r1 and r2 coincide.
We do not also require that both selector conditions are
equivalent since when selectors are arbitrary first-order
logic predicates, this problem is undecidable.

As an example, a refactoring over our running
example (Fig. 3.1) cannot add a read operations over

77

the customer class. It could neither remove the existing
ReadProduct operation (but for instance, it could move
this operation to a different page).

Definition 4.3. A refactoring r(N)→ N’ is update-
behaviour preserving when:

1. For each modification operation op appearing in
an arc a, a∈ GN, there is an arc a’, a’ ∈ GN’

, that
includes an operation op’ equal to op.

2. For each modification operation op’ appearing
in an arc a’, a’ ∈ GN’

, there exists an arc a, a ∈
GN , that includes an operation op equal to op’.

We say that two modification operations are the
same operation if they represent the same kind of
modification (insert/update/delete) over the same
model element. We do not require that the possible set
of argument values they may receive as input values
coincide. This cannot be determined at design-time
since parameter arguments may come from values
provided by the user at run-time.

When evaluating both definitions we should only
consider the set of vertices (and their arcs) reachable
from a home page.

InsertSale

New
SaleLine

New
Sale

Home
Page

InsertSaleLine
InsertComposedOf
InsertReferences

ReadProduct(name,true) Add new
lines

ReadProduct(name,true)
InsertSaleLine
InsertComposedOf
InsertReferences

Figure. 4.1. A behaviour preserving refactoring of the
navigation model in Fig. 3.1

For instance, a refactoring over our running example
could generate the new navigation model shown in Fig.
4.1. This new model contains a new page to add new
lines to an existing sale (for the sake of simplicity, we
assume that the user directly provides the id of the sale,
so no read operations on the Sale type are needed). The
model is update-behaviour preserving (and read-
behaviour preserving as well) since all operations in
the new links were already included in the original
model; the user cannot apply after the refactoring
changes on the data not permitted before.

Additionally, in the previous definitions, the
refactored navigation model N’ must be correct [14].
That is, all possible navigation paths in N’ must be
capable of leaving the underlying application data in a
consistent state (i.e. a state that satisfies all integrity
constraints defined in the data model). This can be
determined by means of computing all possible
navigation paths in N‘ and checking that the sequence
of operations appearing in the arcs of each path can
possibly evolve the data to a consistent state. The
algorithm to check the correctness of a navigation

model was already presented in [14]. To simplify the
presentation of our refactorings, we will omit
expliciting this condition in their definition.

We are aware of the trade-offs implicit in our
definition of behaviour preserving for navigation
models. Stronger conditions to assess behaviour
preservation for navigation models (as, for instance,
requesting that not only the type of the modification
operations but their ordering is preserved after the
refactoring as well) could have been stated. However,
we prefer to favour flexibility instead of a more strict
application of the refactoring process. The study of a
wider range of behaviour preserving definitions and
their effect on the results of the refactoring process is
left as further work.

5. Catalogue of Refactorings

In this section we present a catalogue of refactorings

for navigation models. The refactorings can be
combined to generate more complex transformation
sequences. These refactorings are behaviour-
preserving, according to our definition of behaviour
preservation given in the previous section. Alternative
definitions could result in a different refactorings list.

All refactorings are expressed as graph
transformation rules over the graph representing the
navigation model. At the end of the refactoring process
the resulting graph can be translated back into the
actual navigation model by means of reversing the
rules introduced in Section 3.

Designers may use these refactorings to improve the
navigation model. The exact set of refactorings to
apply will depend on the designer’s goals. For
instance, some refactorings reduce the size of the
navigation model (useful to reduce the complexity of
the model) while others introduce new model elements,
even some redundant ones (which may favour its
usability).

Due to lack of space we only provide a partial list of
refactorings that covers the basic modifications on
pages, links and navigation paths. Thus, for instance,
refactorings over operations (to move operations to a
different link or to simplify operation sequences taken
into account the semantics of each individual
operation) are not described.

5.1. Graph transformations

Graph transformation [15] is a popular rule-based

technique for expressing model transformations [16]
when models are expressed as graphs. In what follows
we summarize the main elements of graph
transformations in order to facilitate the interpretation
of our refactorings. We do not stick to a particular

78

graph transformation language (see [16] for examples)
but use common characteristics of all of them.

Graph transformation rules consist of a LHS (left-
hand side) and a RHS (right-hand side) graph patterns.
The LHS matches a subset of the source graph. This
subset is then modified according to the RHS.
Roughly, elements in LHS not included in RHS are
removed from the graph while elements in RHS but not
in LHS are created. The LHS may contain additional
conditions, as negative conditions or textual conditions
that restrict the rule applicability. Each rule can be
iteratively applied as long as the model still contains a
match for the rule.

As an example, Fig. 5.1 shows a graph
transformation rule that creates a link between a home
page and a page including (at least) one read operation.
H, P and ReadETi are variables of the transformation
rule so any subgraph of the model including a home
page and a page with a read operation (no matter the
entity type queried by the read operation) can be
mapped to these variables and be a match for the LHS.
Since the only difference between the RHS and the
LHS is the link between H and P, the creation of this
link is the only change performed by the rule.

 P H

ReadETi

PH

ReadETi

Figure. 5.1. A simple graph transformation rule

5.2. Refactorings over links

Add link. This refactoring creates a new link between
a pair of pages1 A and B to provide a direct access to B
from A. To ensure the behaviour preservation
condition, a new link may be created between two
pages either when the link has no attached
modification operations (Fig. 5.2. a) or when all
operations already appear in some other existing link in
the graph (Fig. 5.2. b shows the patterns when the new
link has a single attached operation op).

 A B A Ba)

b)
A B A B op op

C D op C D

Figure. 5.2. Add link refactoring rules

1 Unless explicitly stated, the proposed refactorings can be

also applied over home pages (and their incoming and
outgoing links) without variations. Due to lack of space,
this is not explicitly shown in the figures that graphically
describe the transformation rules.

We could apply this refactoring over our running
example (Fig. 3.1) to create a new link between the
NewSale page and the HomePage (Fig. 5.3).

InsertSale

New
SaleLine

New
Sale

Home
Page

InsertSaleLine
InsertComposedOf
InsertReferences

ReadProduct(name,true)
Figure. 5.3. Adding a link from NewSale page to

HomePage

Change source page. A link to a page C is moved
from a page A to a page B (Fig. 5.4). The link may be
labelled. In this and the following patterns, we denote
as sOpXY the (possibly empty) sequence of operations
attached to a link going from page X to page Y in the
LHS. Note that, to preserve the model behaviour, the
refactoring does not change the sequence of operations
sOpAC attached to the link; the same sequence appears
associated to the outgoing link from the new source
page B in the RHS. Note that this refactoring preserves
the reachability of C.

 A C B CB AsOpAC sOpAC

Figure. 5.4. Change source page refactoring rule

Change destination page. The target page of a link is
changed from a page A to a page B (Fig. 5.5).

 C A C B B AsOpCA sOpCA

Figure. 5.5. Change destination page refactoring rule
Clone link. A link is duplicated. The source and
destination pages are not changed (they can be changed
afterwards using the above refactorings). All link
operations (if any) are also cloned (Fig. 5.6).

A BsOpAB

A B
sOpAB

sOpAB

Figure. 5.6. Clone link refactoring rule

Remove link. A link is removed. To preserve the
reachability of the destination page, this page must
have at least another incoming link. To ensure the
behaviour preserving condition, the removed link
either does not present attached operations (Fig. 5.7 a)
or all of them also appear in other links (Fig. 5.7. b
shows the LHS and RHS for links with a single
attached operation).

79

 A
B

A
B a)

b)

C C

D E op
op A

B
C

D Eop
A

B
C

Figure. 5.7. Remove link refactoring rules

5.3. Refactorings over pages

Mark as home page. A page A is marked as a new
home page (Fig. 5.8 a).

Unmark home page. A home page A is transformed
into a “normal” page. This is only possible if the
navigation model contains at least another home page
(Fig. 5.8 b)

 A A BAB A a) b)

Figure. 5.8. Mark as home page and Unmark home page
refactoring rules

Add page. A new page B is created in the navigation
model. To guarantee its reachability, this new page is
linked to an existing page A. To preserve the external
model behaviour, the new page must not include read
operations (Fig. 5.9 a) or all its read operations must
already appear in other existing pages (Fig. 5.9 b
shows the rule for new pages with a single read
operation over an entity type ETi).

 A A B a)

b) A C A B
ReadETi ReadETi

C

ReadETi

Figure. 5.9. Add page refactoring rules

Fig. 5.10 shows the application of this refactoring
over our running example. A new Contact page is
created and linked both ways (the second link is
created with the help of the add link refactoring) to the
Home Page.

InsertSale

New
SaleLine

New
Sale

Home
Page

InsertSaleLine
InsertComposedOf
InsertReferences

ReadProduct(name,true) Contact

Figure. 5.10. Adding a new Contact page and a link from
this new page to the home page

Clone page. A page is duplicated (including all its read
operations). All incoming and outgoing links along

with their modification operations are cloned as well
(Fig. 5.11).

Parallel Merge. Two non-consecutive pages P1 and P2
are merged into a single one with sReadP1 ∪ sReadP2
read operations and with all P1 and P2 incoming and
outgoing links (and their corresponding operations). In
this and the following refactorings, we denote as
sReadX the (possibly empty) set of read operations of a
page X (Fig. 5.12).

Sequence Merge. Two consecutive pages P1 and P2 are
merged into a single one (Fig. 5.13). The resulting
page has the P1 incoming links and the P2 outgoing
links. When the P1-to-P2 link has operations, they are
added into all outgoing links of the merged P1P2 page.
An expression like ‘sOp1 || sOp2’ in the RHS denotes
that the link contains the concatenation of the sequence
of operations in sOp1 plus the sequence of operations in
sOp2.

Split. A page P is split up into two consecutive pages
P1 and P2 connected by a simple link. Incoming P links
are redirected to P1. Outgoing P links become anchored
in P2. Read operations in P can be moved to P1, P2 or
both (Fig. 5.14).

As an example, an application of the split
refactoring over the NewSaleLine page may generate
the SaleLineData and SelectProduct pages (Fig. 5.15).
In the first one, the user enters the values for the
attributes of SaleLine type (as the quantity attribute in
our example) while in the second one he/she selects the
purchased product (in this case, ReadProduct is moved
to this second page). After that, the new sale line is
added to the database and the process can repeat again.
We could also clone the link from SelectProduct to
SaleLineData (clone link refactoring) and make it point
to NewSale (change destination page refactoring) so
that, after creating all sale lines, we can directly start
inserting a new sale.

Remove Page. A page A is removed from the model.
All incoming and outgoing links are removed as well.
This refactoring can only be applied if all links can be
removed according to the conditions stated in the
remove link refactoring. Besides, if the page has read
operations, all read operations must appear in other
existing pages in the model. Fig. 5.16 shows the
refactoring rules for pages without (a) and with a
single read operation (b).

80

 A1 B sOpA1B

An
…

C1

Cn

…

A1 B

An

…

C1

Cn
sOpAnB

sOpBC1

sOpBCn

sOpA1B

sOpAnB

sOpBC1

sOpBCn

B’

sOpA1B
sOpAnB

sOpBC1

sOpBCn

…

Figure. 5.11. Clone page refactoring rule

A1 B sOpA1B

An
…

C1

Cn

… sOpAnB

sOpBC1

sOpBCn

D1 E sOpD1E

Dn
…

F1

Fn

sOpDnE

sOpEF1

sOpEFn

sReadB

…

A1

sOpA1B

An

…
sOpAnB

D1

Dn

…
sOpDnB

sReadE

BE
sOpD1B

C1

Cn
… sOpBC1

sOpBCn

F1

Fn

sOpEF1

sOpEFn
…

sReadB
∪

sReadE

Figure. 5.12. Parallel Merge refactoring rule

A1 B1 sOpA1B1

An
…

C1

Cn

… sOpAnB1

sOpB2C1

sOpB2Cn

B2
sOpB1B2 A1 B1 B2

sOpA1B1

An

…

C1

Cn
… sOpAnB1

sOpB1B2 || sOpB2C1

sOpB1B2 || sOpB2Cn

sReadB1 sReadB2 sReadB1
∪

sReadB2

Figure. 5.13. Sequence Merge refactoring rule

 A1 B
sOpA1B

An
…

C1

Cn

… sOpAnB

sOpBC1

sOpBCn

A1 B1

sOpA1B

An

…

C1

Cn
… sOpAnB

sOpBC1

sOpBCn

B2

Figure. 5.14. Split refactoring rule

InsertSale

SaleLine
Data

New
Sale Home

Page

InsertSaleLine
InsertComposedOf
InsertReferences

ReadProduct(name,true)
Contact

Select
Product

Figure. 5.15. NewSaleLine is split into to two different pages.

 Aa)

b) A C

ReadETi

C

ReadETi ReadETi

Figure. 5.16 Remove page refactoring rules

81

5.4. Refactorings over Navigation Paths

Remove redundant navigation paths. Redundant
paths in the model are usually useless and could be
removed to improve the structure of the model. We say
that two paths starting in the same home page are
redundant if the ordered sequence of modification
operations associated to the arcs coincide and the set of
read operations attached to the pages of both paths is
equivalent. Note that we do not require that both paths
have the same number of pages nor that operations
appear exactly in the same position, as long as the
operation sequences satisfy the previous conditions
(Fig. 5.17).

Head-Merge of navigation paths. Two navigation
paths with an equivalent beginning part can be merged
into a single sequence that divides after the common
part ends. We determine that two paths share a
common beginning with the same procedure stated in
the previous pattern to detect redundant paths. The
common part is the one sharing the same sequence of
operations and read operations (Fig. 5.18).

Tail-Merge of navigation paths. The common part of
two navigation paths presenting an equivalent ending
part can be merged (Fig. 5.19).

 B1

E1
sReadB1

sReadE1

. . . Bn

sReadBn

. . . En

sReadEn
sOpB1B2 || sOpB2B3 || … || sOpBn-1Bn = sOpE1E2 || sOpE2E3 || … || sOpEn-
sReadB1 ∪ sReadB2 ∪ … ∪ sReadBn = sReadE1 ∪ sReadE2 ∪ … ∪ sReadEn

E1

sReadE1

. . . En
sReadEn

Home
Page Home

Page

Figure. 5.17. Remove redundant path refactoring rule

 B1 C1

Cn

…
sOpBnC1

sOpBnCn

E1 F1

Fn

sOpEnF1

sOpEnFn

sReadB1

… sReadE1

. . . Bn
sReadBn

. . . En
sReadEn

Cn
…

sOpBnCn

E1
F1

Fn

sOpEnF1

sOpEnFn
sReadE1

. . . En

sReadEn

sOpBnC1

C1

Home
Page Home

Page

sOpB1B2 || sOpB2B3 || … || sOpBn-1Bn = sOpE1E2 || sOpE2E3 || … || sOpEn-1En
sReadB1 ∪ sReadB2 ∪ … ∪ sReadBn = sReadE1 ∪ sReadE2 ∪ … ∪ sReadEn

Figure. 5.18. Head-Merge refactoring rule

 A1 B1 sOpA1B1

An
… sOpAnB1

D1 E1 sOpD1E1

Dn
… sOpDnE1

sReadB1

sReadE1

. . . Bn

sReadBn

. . . En

sReadEn

A1

An

…

sOpAnB1

D1 E1
sOpD1E1

Dn

… sOpDnE1 sReadE1

. . . En
sReadEn

sOpA1B1

sOpB1B2 || sOpB2B3 || … || sOpBn-1Bn = sOpE1E2 || sOpE2E3 || … || sOpEn-1En
sReadB1 ∪ sReadB2 ∪ … ∪ sReadBn = sReadE1 ∪ sReadE2 ∪ … ∪ sReadEn

Figure. 5.19. Tail-merge refactoring rule

82

6. Tool Support

We have developed a prototype tool to assist the

designer during the application of our refactorings.
In particular, the input of the tool is a WebML

model (saved as an XML file) specified with
WebRatio [17]. This initial model is processed by the
tool and transformed into our graph-based
representation. Then, the designer may evolve the

model by selecting one of our refactoring operations.
If the refactoring can be applied (i.e. the left-hand
side pattern of the refactoring rule has a match on the
graph), the tool updates the graph (according to the
right-hand side pattern)

Once the designer feels that all necessary
refactorings have been performed, the modified
model can be exported as an XML file and imported
back again into the WebRatio tool to proceed with
the development process.

Figure. 6.1. Application of the AddPage refactoring over an example navigation model

7. Automatic Refactorings Selection

So far we have assumed that the refactorings are

manually selected by the designer. However, we
envision a more ambitious approach, where
refactorings are (partially) selected and suggested to
the designer depending on the current structure of the
navigation model and the quality goals pursued by the
designer (usability, simplicity, minimization of the
length of navigation paths and so forth).

A complete description of how such an approach
could be realized is out of the scope of this paper and
left as further work.

Nevertheless, we would like to, at least, state its
main elements:

- A set of metrics to collect representative
information of the current quality state of the
navigation model. These metrics could be based
on the syntactic definition of the model [18]
(number of pages, number of links, average
number of links per page…) or on run-time
information provided by web-mining
techniques [19] (most visited pages, most
popular navigation paths,…) for those
navigation models corresponding to already
running applications.

- A list of relevant <metric,goal> combinations.
That is, for each possible quality goal the
designer may choose, we should determine the
list of metrics that may help to evaluate the
fulfilment of that goal.

83

- A list of thresholds for each <metric, goal>
combination. These values would serve as an
alert to detect and highlight those aspects of the
navigation model that do not meet the quality
requirements for the goal.

- A list of <refactoring, metric, effect> tuples
stating the (positive or negative) effect of a
refactoring over each metric. The effect may be
quantitative or qualitative.

Given these set of elements, an algorithm for
selecting the right refactoring combinations to
improve a navigation model N according to a goal G
could proceed as follows:
1. Evaluate the initial values of N for the relevant

metrics of G.
2. Select a metric M from those presenting a value

below the defined threshold. The metric could
be manually choosen by the designer or
randomly selected (and likewise for the
following steps).

3. Select a refactoring R among those with a
positive effect on M.

4. Use “bad smells” to detect those parts of the
navigation model where R could be more
effectively applied. A bad smell is a structure in
the code (the navigation model in our case) that
“suggest (and sometimes scream for) the
possibility of refactoring” [1].

5. Apply R.
6. Repeat until all metric values satisfy the

threshold.

8. Conclusions and Further Work

We have presented a catalogue of refactorings to

improve the quality of existing navigation models.
Quality of navigation models is one of the main
problems of current web development methods due to
their increasing complexity and expressivity.

Our refactorings are formalized as graph
transformation rules over a graph-based representation
of the given navigation model including read and
content-modification operations. Each rule includes the
necessary conditions to ensure that the behaviour of the
navigation model is preserved by the refactoring.

We plan to continue our work in several directions.
First, we would like to expand our list of refactorings
by considering also those refactorings on the data
model that may affect the related navigation model
elements (for instance, the removal of an attribute from
an entity type affects all pages reading that attribute)
and by admitting more complex navigation models, as
the enriched navigation models required to cope with
rich internet applications. Secondly, we plan to
advance in the automation of the refactoring process,

as sketched in section 7. Finally, we plan to validate
our refactorings with an industrial case study.

Acknowledgements

This work was partially supported by the Ministerio
de Ciencia y Tecnologia and FEDER under project
TIN2005-06053.

References

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.

Roberts, Refactoring: Improving the Design of
Existing Code: Addison-Wesley Pub Co, 2000.

[2] T. Mens and T. Tourwé, "A Survey of Software
Refactoring," IEEE Transactions on Software
Engineering, vol. 30, pp. 126-239, 2004.

[3] A. Garrido, G. Rossi, and D. Distante, "Model
Refactoring in Web Applications," presented at 9th
Int. Symp. on Web Site Evolution (WSE'07), 2007.

[4] G. Rossi, D. Schwabe, and F. Lyardet, "Improving
Web information systems with navigational
patterns," Computer Networks, vol. 31, pp. 1667-
1678, 1999.

[5] M. v. Welie, "Web Design patterns",
http://www.welie.com/patterns/index.html, visited
May, 2007.

[6] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S.
Comai, and M. Matera, Designing Data-Intensive
Web Applications: Morgan Kaufmann, 2002.

[7] O. Pastor, J. Fons, V. Pelechano, and S. Abrahão,
"Conceptual Modelling of Web Applications: The
OOWS approach," in Web Engineering: Springer-
Verlag, 2006, pp. 277-302.

[8] M. Jakob, H. Schwarz, F. Kaiser, and B.
Mitschang, "Modeling and Generating Application
Logic for Data-Intensive Web Applications,"
presented at 6th Int. Conf. on Web Engineering
(ICWE'06), 2006.

[9] B. Bollobás, Modern Graph Theory: Springer-
Verlag, 1998.

[10] Karl R. P. H. Leung, Lucas Chi Kwong Hui, S.-M.
Yiu, and R. W. M. Tang, "Modeling Web
Navigation by Statechart," presented at 24th Int.
Conf. on Computer Software and Applications
(COMPSAC'00), 2000.

[11] P. D. Stotts and R. Furuta, "Petri-net-based
hypertext: document structure with browsing
semantics " ACM Transactions on Information
Systems, vol. 7, pp. 3-29, 1989.

[12] W. F. Opdyke, "Refactoring: A Program
Restructuring Aid in Designing Object-Oriented
Applicatin Frameworks," University of Illinois,
1992.

[13] T. Mens, S. Demeyer, and D. Janssens,
"Formalizing behaviour preserving program
transformation," presented at 1st Int. Conf. on
Graph Transformation, 2002.

[14] J. Cabot and C. Gómez, "On the Quality of
Navigation Models with Content-Modification
Operations," presented at 7th Int. Conf. on Web
Engineering (ICWE'07), 2007.

84

[15] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-
J. Kreowski, S. Kuske, D. Plump, A. Schürr, and
G. Taentzer, "Graph Transformation for
Specification and Programming," Sci. Comput.
Program, vol. 34, pp. 1-54, 1999.

[16] K. Czarnecki and S. Helsen, "Feature-model-based
characterization and survey of model
transformation approaches," IBM Systems Journal,
vol. 45, pp. 621-646, 2006.

[17] WebModels, "WebRatio." www.webratio.com

[18] C. Calero, J. Ruiz, and M. Piattini, "A Web Metrics
Survey Using WQM," presented at 4th Int. Conf.
on Web Engineering (ICWE'04), 2004.

[19] Q. Zhao, S. S. Bhowmick, and L. Gruenwald,
"WAM-Miner: in the search of web access motifs
from historical web log data," presented at 14th
ACM Int. Conf. on Information and Knowledge
Management (CIKM'05), 2005.

85

