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Abstract 
 

Web-based systems can exploit Semantic Web-
based approaches to link data and thus create 
applications that make the most out of the combination 
and integration of different sources and background 
knowledge. While a lot of attention is paid to the 
opportunities that this linking of data on the Web 
provides, the reality of implementing such solutions 
with currently available semantic technologies creates 
a serious engineering challenge. In developing such 
applications in a commercial setting, we have been 
confronted with requirements and conditions that show 
the limitations of current technologies for this type of 
Web applications. Using our experience from iFanzy, 
we illustrate in this paper the issues and steps in 
turning the concept of access to semantically 
integrated content into solutions that use available 
technology. 
 
1. Introduction 
 

Many Web applications today are characterized by 
the integrated use of data from several already 
available sources or applications. Their engineering 
therefore includes two important steps in the 
specification and subsequent efficient implementation 
of that integration. More and more of them use 
techniques from the Semantic Web initiative for this 
purpose. One of the strengths of the Semantic Web is 
the ability to combine and integrate data from different 
data sources, thereby increasing the total amount of 
knowledge that was contained in the separate sources. 
By obtaining more, derived knowledge out of the 
combination of data, applications can offer more and 
new functionality compared to the original individual 
sources or applications. 

When we observe current Semantic Web-based 
applications, we see that most of the applications using 
Semantic Web data do this on a relatively small scale. 
However, one of the main attractions of such Semantic 
Web-based applications is that, like with the ‘normal’ 
World Wide Web, they can operate in a ubiquitous and 
large-scale setting. This certainly applies now that 
many large Semantic Web data sources are becoming 
available for integration, either in native RDF or as a 
transformation of an originally differently structured 
source. Example sources are DBpedia [15] and IMDb1 
which have over 218 million triples and 53 million 
triples respectively. Integrating and combining these 
data sources into a Web application poses challenging 
engineering problems.  

 A straightforward, first engineering approach to 
implement such Web applications is to put everything 
in currently available RDF repositories. This is an 
interesting approach as it allows us to obtain additional 
functionality in the application in terms of knowledge 
derived from the combination of the included sources. 
However, this approach leads to huge data sets that 
pose significant scalability problems (see e.g. [1] for an 
overview of problems with current RDF storage 
solutions). Therefore, this first step of specifying the 
integration and combination has to be followed by a 
second engineering step that considers the actual 
efficient realization and implementation of this 
integration.  

We have gained experience with this realization 
step in several systems, e.g. CHIP [4], iFanzy [5]. 
There we experienced what was needed to achieve 
efficient access to the large integrated sets of semantic 
data that are used in our Web applications to deliver 
the desired functionality. 

                                                        
1 http://imdb.com/ 
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 In this paper we report on our experience with the 
realization of iFanzy (developed in collaboration with 
Stoneroos Interactive TV, Ltd.2). iFanzy3 is a 
personalized TV guide application aimed at offering 
users television content in a personalized and context-
sensitive way. It consists of a client-server system with 
multiple clients and devices such that the user can 
ubiquitously use TV set-top box, mobile phone and 
Web-based applications to select and receive 
personalized TV content. TV content and background 
data from various heterogeneous sources are integrated 
to provide a transparent knowledge structure which 
allows the user to navigate and browse the vast content 
sets nowadays available. Semantic Web techniques are 
applied to make the interconnections between the 
various data and content. The resulting RDF/OWL 
knowledge structure is the basis for iFanzy's main 
functionality like semantic searches of the broadcast 
content and execution of context-sensitive 
recommendations. iFanzy differs from other semantic 
TV recommender systems, like for instance presented 
in [7], [10] and [3], because we focus on very large 
datasets (and live datasources) and integration of  that 
information. We also use the larger structure of our 
integrated set for recommendation. For the 
recommendation part of our application we can reuse 
many of the works on recommendation in the TV 
domain. Think for instance of MovieLens4 that makes 
use of collaborative filtering. For an overview of 
different recommendation strategies e.g. refer to [14]. 

In [6] we have described the first step in the 
conception of iFanzy, which describes at the functional 
level how the application combines data from several 
sources to provide the desired functionality. As this 
system is moving towards a real commercial 
application, we have to ensure that the architecture of 
the system can meet the demands of a large-scale Web-
based usage. We note here that in a lot of comparable 
work, this ambition of efficient access is often 
secondary to the ambition to achieve “interesting” 
derived knowledge. With iFanzy we put in 
considerable effort to realize significant improvements 
in the engineering of the efficient access. As iFanzy 
was nominated for the Semantic Web Challenge 2007 
[5] and ended runner-up, it poses a good representative 
application and we used it in this research to 
experiment with this important and often underrated 
engineering step, and in this paper we share our 
experiences and results. 

                                                        
2 http://www.stoneroos.nl/ 
3 http://ifanzy.nl/ 
4 http://www.movielens.org/ 

The paper describes how the general recipe to link 
the data at the semantic level in one’s Web application 
leads to concrete challenges for realizing efficient 
access to the data on real-time timescales. We do so on 
the basis of our concrete experience with representative 
data from the iFanzy research, as this is not only a very 
characteristic example but also a challenging one for 
which the experimental documentation of the 
engineering steps can benefit a large class of similar 
applications.  

If we look at related work we see that some 
approaches exist in trying to handle large ontological 
structures, for instance [13] and [16] which both deals 
with large ontologies, both using a data partitioning 
approach to increase performance. In contrast, we 
focus less on size of the ontology but more on the 
instances of those ontologies and on a much larger 
scale: where [13] and [16] deal with thousands of 
elements we look at data with tens of millions of 
elements. However, the techniques they use are still 
interesting and to a small extend applicable to our case. 
Also some semantic repositories focus on scalability 
using big datasets in sizes that are relevant for us (e.g. 
OWLIM [9], for a performance overview see [12]). 
These systems mainly focus on scalability in loading 
times and inference capabilities. Even though these 
systems are very interesting and we regularly test new 
systems on performance they currently still fall short 
with our stringent real-time requirements on query 
evaluation for the size of datasets and complexity of 
queries we are facing. 

This paper is structured as follows. Section 2 
explains the general recipe for semantically integrating 
data from different sources and applications. Section 3 
shortly introduces the engineering steps required for 
efficient access to integrated data. Section 4 explains 
the first phase, data preparation. Section 5 elaborates 
on the decomposition of data sources for better 
performance and on the subsequent query splitting. 
Section 6 explains optimizations concerning reasoning, 
and section 7 discusses the use of existing techniques 
and tools to further improve performance. Finally, 
section 8 presents conclusions and future work. 

 
2. Linking Data and Integration 
 

Before we can turn to the second step of 
engineering for achieving efficient access to the linked 
data, we need to set the stage by shortly explaining the 
general recipe for the first step of semantically 
integrating data from different sources and 
applications. As we mentioned before, we illustrate and 
document this here in this paper for data obtained from 
iFanzy as one possible representative, but this general 

53



recipe we have also used in the development of other 
systems, like CHIP [4]. 

The main data sources used in iFanzy are the BBC 
Backstage5 data set, the XMLTV6 data set (which was 
obtained from crawling several online TV guides), the 
IMDb schema and data set, the TV Anytime7 genre 
classification, the OWL Time ontology8, a Geo 
Ontology (which we constructed on basis of IMDb 
location information), and RDF WordNet9.  

In abstract, the recipe for semantic integration 
consists of four steps: 
1. Making TV metadata available in RDF/OWL: First, 

we make the relevant metadata from various data 
sources available in RDF/OWL. For example, we 
use three live data sources, online TV guides in 
XMLTV format (e.g. 1.2M RDF triples for the 
daily updated programs), online movie databases 
such as IMDb in custom text format (e.g. 53M 
triples including trailers from Videodetective.com), 
and broadcast metadata available from BBC-
backstage in TV-Anytime format (e.g. 92K triples, 
daily updated). All these sets of metadata give us a 
quite detailed description of available TV 
programming and related material. 

2. Making relevant vocabularies available in 
RDF/OWL: Having the metadata available, it is 
also necessary to make relevant vocabularies 
available in RDF/OWL. We created a genre 
ontology (5K triples) based on the TV-Anytime 
genre hierarchy that is used to describe all the 
genres that are used in our metadata sets (i.e. 
IMDb, XMLTV and BBC Backstage). We used the 
SKOS vocabulary10 to express the relationships 
between genres.  All these genres play a role in the 
classification of the TV content and the user's 
likings (in order to support the recommendation). 
For time and location-based reasoning we use the 
W3C Time ontology11 (1.5K triples) and the 
location hierarchy as used in IMDb (60K triples) 
respectively. We also used WordNet 2.04 as 
published by W3C (2M triples) to exploit language 
relations like synonyms and hyponyms. 

3. Aligning and enriching vocabularies/metadata: 
Here we did (a) alignment of genre vocabularies, 
(b) semantic enrichment of the genre vocabulary in 

                                                        
5 http://backstage.bbc.co.uk/ 
6 http://xmltv.org/wiki/ 
7 http://www.tv-anytime.org/ 
8 http://www.w3.org/TR/owl-time/ 
9 http://www.w3.org/TR/wordnet-rdf/ 
10 http://www.w3.org/TR/skos-reference/ 
11 http://www.w3.org/TR/owl-time/ 

TV-Anytime, and (c) semantic enrichment of TV 
metadata with IMDb movie metadata. 

a. First, aligning our genre ontology to the genre 
vocabularies used in the metadata sources was 
a small semi-automated exercise in which  
several translations were specified towards the 
TV-Anytime vocabulary, such as the 
associations between xmltv:documentaire 
and tva:documentary, between 
IMDb:thriller and tva:thriller, and 
between IMDb:sci-fi and 
tva:science_fiction. Simple matches 
like IMDb:action to tva:action were 
executed automatically by a string matching 
algorithm, while less straightforward matches 
were executed by a domain expert. 

b. Second, for the semantic enrichment of the 
genre vocabulary, 

i. skos:narrower relations are 
introduced based on the original TV-
Anytime XML genre hierarchy, for 
example between tva:sports and 
tva:soccer.  

ii. skos:related relations are defined 
based on partial label matching, for 
example between tva:sport_news and 
tva:sport, or by using background 
knowledge of a domain expert, e.g. 
between sibling genres like tva:rugby 
and tva:American_football. 

c. Third, in terms of semantic enrichment of the 
TV metadata (that can come from different 
TV guides in different languages) we use an 
automated algorithm to couple the programs 
that happen to be movies to the corresponding 
movie information in the IMDb database. As 
titles might not also be matched one-on-one, 
consider for instance the semantic equivalent 
titles "Buono, il brutto, il cattivo, Il (1966)" 
and "The Good, the Bad and the Ugly", we 
consider not only the title fields, but also use 
AKA-title information and information on the 
director to be certain that a program matches a 
movie.  

4. Using the resulting RDF/OWL graph for 
recommendations: To recommend TV programs or 
movies, the resulting RDF/OWL graph is extended 
with the user model knowledge such that the 
eventual RDF/OWL knowledge structure can be 
directly used for the recommendation. What 
happens is that when a specific user rates a program 
P, implicitly program P is rated together with all 
programs (and actors, directors and persons) that 
are related in the knowledge structure. Moreover, 
all programs with a genre that is related to a genre 
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of P are rated, as well as the genres themselves via 
skos:related and skos:narrower relations. In 
this way, ratings are added within the user's 
context. When querying the graph, query expansion 
is used, exploiting ontology relationships like 
synonym relations from WordNet and the 
skos:narrower and skos:related relationships 
from the vocabularies. 
Now that we have described the first step, namely 

the semantic linking of the data to arrive at the derived 
knowledge for the recommendations in the system, we 
turn to the concrete reality of realizing acceptable 
efficiency for this conceptual solution. 

 
3. Engineering Efficient Access to the 
Integrated Data 
 

The iFanzy scenario has given us a realistic 
challenge of a large, connected set of data in a Web 
application for which it is necessary to make the 
querying and retrieval of this data as efficiently as 
possible, in order to meet the demands of the 
application and its usage. Therefore, for the purpose of 
this presentation of experience results, we concentrate 
on the efficient access to the set of RDF-based data 
that constitutes the essence of this Web application, 
and disregard application-specific constraints about 
freshness of data which are not relevant for the general 
consideration of how to realize the efficient access. 

In our consideration of steps to improve access 
efficiency, we look at the following issues: 

1. Preparing the data in the proper format 
2. Decomposing the combined data (graph) model 

into connected parts and rewriting queries in 
accordance with the data decomposition 

3. Implementing inference 
4. Using currently available tools and technology 
In the next sections, we will consider each of these 

issues in isolation and thus document our 
(representative) experience for this concrete and 
illustrative data set. It shows how we start at the large 
RDF data set that results from the semantic integration 
and that is fit for the desired recommendations, and 
how we then turn this conceptual data set into a 
concrete system that uses currently available 
technology. 
 
 
4. Data Preparation 
 

A first issue to consider is the way in which the 
data is obtained in the application. In a realistic setting, 
data sources typically reside in different (physical) 
locations and are described in different (non-

compatible) formats and schemas. In general, even 
when compatible with Semantic Web languages and 
standards, these raw data sources first need to be 
harmonized in order to be able to evaluate complex 
source-transgressing queries. A first step to harvest the 
decentralized knowledge is thus a data preparation 
phase, in which the data from the different semantic 
data sources are prepared for unified processing. The 
following data preparation steps were performed for 
the iFanzy sources: 

- Data availability: The data is made available from 
the original source. In the ideal case, the original 
source is in Semantic Web format (i.e. RDF(S) / 
OWL), and offers direct possibility for remote 
querying (e.g. using a remote query service such 
as the Sesame12 HTTP server or Virtuoso 
SPARQL Query Service13). In general, as was the 
case for iFanzy sources, remote sources do not 
offer this functionality. Therefore, data import is 
the most viable solution. In some cases the data is 
readily available (e.g. WordNet in RDF/OWL can 
be downloaded as a zip file14), in other cases, 
screen scrapers were needed to retrieve the data 
(e.g. we originally developed a scraper for the 
IMDb website). Note that the preferred or needed 
solution differs depending on whether one wants 
to have the entire data set available or wants to be 
able to query the data set with individual queries. 

- Data conversion: Once the data is retrieved, we 
need to convert it into the correct RDF/OWL 
format. This conversion naturally depends on the 
initial format. In the case of WordNet the format 
was already RDF/OWL, in other cases a 
transformation was required. The TV-Anytime 
XML format retrieved from BBC Backstage or 
provided by the crawlers was transformed into our 
RDF/OWL format using an XSLT transformation. 
For IMDb, transforming the available plain text 
files to our RDF/OWL graph proved to be more 
challenging. In total there are 49 text files, each 
containing all the data on a certain domain (e.g. 
actors, producers, movies, countries, genres, 
ratings, quotes…). The files are of varying sizes, 
some quite large (e.g. the actors file is up to 360 
MB). Every ‘object’ (a movie, an actor…) in those 
files has a unique identifier which is used 
throughout the other files. Parsers were written to 
parse each different file, exporting the required 
RDF/OWL format; a labor-intensive job.  

                                                        
12 http://www.openrdf.org/ 
13 http://docs.openlinksw.com/virtuoso/ 
14 http://www.w3.org/2001/sw/BestPractices/WNET/wn-

conversion.html 
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- Data integration: Once the data is transformed in 
RDF/OWL format, the different sources need to be 
integrated. This may require transforming the 
names and structure for certain concepts or 
properties, matching of resources from different 
sources and eliminating duplicate classes 
representing the same real-world concepts. For 
example, for the enrichment of the TV metadata 
(that can come from different online TV guides in 
different languages) we linked movie programs to 
the IMDb metadata, taking into account title data 
as well as AKA-titles and director information. 
For the XML grabber programs all time fields 
(startTime, endTime, duration…) are exposed as 
XML datetime/duration types, which we convert 
to a Time Ontology instance.  

When we compare this to current examples of 
applications that use semantic content, we observe that 
most of them have such a data preparation phase. 
Considering for example some other representative 
applications of the last Semantic Web Challenge15, we 
also recognize the steps described above. GroupMe! 
[2] is a Web 2.0 style application that enables users to 
search for items from various sources (Google, Flickr, 
etc) and allows creating and tagging of groups of such 
resources, in addition to tagging the individual 
resources. GroupMe! starts by transforming any 
existing (structured) descriptions from the sources to 
RDF data, using ontologies that are consistent with the 
type of the resource. For example, Flickr-specific 
descriptions are copied into a well-defined RDF 
description using the Dublin Core16 vocabulary.  
Revyu [8] allows users to review and rate arbitrary 
items, providing a description, tags and URIs where 
related information can be found. Additional 
information is subsequently derived from various data 
sources, such as DBPedia or from the supplied URIs. 
In the latter case, the linked HTML pages are scraped 
(data import), the relevant data is converted to RDF 
format (data conversion) and subsequently integrated 
in the local semantic data store (data integration). For 
example, when an item is tagged as a book, the HTML 
pages provided with the description are scraped. When 
an ISBN number is found, an rdf:type property is 
added to the data store stating that the item is indeed a 
book.  
 
5. Decomposition in Sources and Querying 
 

As we motivated in the previous section, a first step 
in harvesting the strength of the Semantic Web lies in 

                                                        
15 http://challenge.semanticweb.org/ 
16 http://dublincore.org/ 

making different data sources compatible and 
combining them. While feasible for smaller-scaled 
projects, we will show in section 5.1 that this approach 
fails when working with real-life (huge) data sets. 
Therefore, a logical and necessary step to increase 
performance was to decompose the main data set into 
several smaller sets, thus making them practically more 
manageable by existing RDF storage and querying 
frameworks (e.g. Sesame and Jena17). The main 
method of operation is to consider which smaller parts 
of the data are queried regularly together: splitting 
them off in a smaller store with an increased 
performance for these queries, while maintaining the 
possibility to link and combine query results at the 
global level, can lead to an increase of performance for 
the overall system. 

Drawing from work in relational databases (see e.g. 
[11]), such decompositions can be performed in two 
ways. Vertical, property-based decomposition in 
databases is based on the schema; instances related to 
certain classes and properties are split off from the data 
set. We will discuss this in section 5.2. Horizontal, 
instance-based decomposition is based on the 
resources: instances that are related in some way (e.g. 
via geographical similarity or specific knowledge 
about the typical queries), are split off from the data 
set. We will discuss that in section 5.3. All the 
experiments described in this section are performed 
using Sesame as an RDF storage and querying 
framework and SeRQL18 as its associated and 
representative query language. 

 
5.1 A single data set 

 
As we saw earlier, real-life data sources can be 

huge. WordNet consists of almost 2 million triples; the 
IMDb data set we worked with contained over 53 
million triples. Consequently, combining several of 
these sources, thereby linking data to be able to infer 
additional knowledge, induces serious performance 
considerations. During our experiments we noticed that 
in this setting, using realistic queries and data sources, 
performance and scalability indeed became critical 
issues. We also saw, for example when discussing with 
tool and technology providers, that these scalability 
problems in Semantic Web-based applications did not 
yet get the necessary attention to solve them in general. 
This might be in part because many such applications 
are created in a research setting, where examples are 
used that avoid the typical scalability and performance 

                                                        
17 http://jena.sourceforge.net 
18 Its current implementation in Sesame is more mature than that of 

the SPARQL W3C recommended query language. 
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problems that arise when employing large RDF data 
sets. 

The straightforward and most common approach, 
which is successfully applied in such smaller-scaled 
projects, is to combine all data, including instance data 
and schema data, in one single data source. Applying 
this approach to the case of the iFanzy data lead to the 
following huge data set (table 1). 

 
Table 1. Combined iFanzy data set 

Data Source #Triples # Items 
IMDb  
+BBC Backstage  
+XMLTV 
+Ontologies 

54 525 724 # Persons: 1 653 543 
# Movies: 976 174 
# Locations: 19 946 
# Time: 1 547 
# Genres: 685 
# Programs: 25 466 

 
To test the feasibility of this first scenario for 

iFanzy, we executed the following four typical iFanzy 
queries with increasing time-complexity19: 

• Query1: All programs with the genre 
‘drama’ (or one of its subgenres). 

• Query2: All programs with the genre 
‘drama’ and the keyword ‘wood’ in the 
program metadata (title, synopsis and 
keywords) 

• Query3: All programs with the keyword 
‘wood’ in the program metadata (title, 
synopsis and keywords) 

• Query4: All programs with the genre 
‘drama’ and the keyword ‘wood’ in the 
program metadata or the person metadata 
(person name) 

As for all experiments reported in this paper, each 
query was executed several times and the average 
execution times are reported. We also made sure that 
there was no caching effect that could influence our 
results. All queries were executed on Fedora Core 4 
Linux system with 1 GB of main memory and a 
Intel(R) Pentium(R) 4 CPU running at 3.00GHz20. The 
average execution times for this experiment are given 
in table 2.  

Although combining the different data sets was a 
necessary and beneficial step from a point of view of 
increasing the available knowledge, as we can see from 
the results below, applications employing huge data 
sets such as iFanzy suffer considerable performance 
problems. Even for the simplest queries, execution 

                                                        
19 Note that we do not display the actual SeRQL queries here 

because of their length. 
20 Note for the database systems we used multi core CPU systems 

hardly bring performance gain 

times quickly exceed the acceptable thresholds for real-
time environments. 
 
Table 2. Average execution times of typical iFanzy 

queries 
Query Average execution time (ms) 
Query1 31 526 
Query2 138 354 
Query3 224 663 
Query4 19 280 121 

 
5.2 Vertical Decompositions 
 

As already explained in the introduction, one way 
of decomposing data sets is by applying vertical 
decomposition: based on the “schema”, certain classes 
and properties, together with the instances that go with 
them, are split off from the data set. Do note that in 
semantic databases like Sesame, there is no way to 
define ‘views’ like commonly used in relational 
databases. So querying a part of a triple store can be 
done either by adding extra restrictions in the where-
clause or to physically divide one store into two new 
stores. In case of large data sets the second option can 
be preferred because semantic databases tend to get 
very slow when large. We applied this idea to split the 
data source in a set of smaller data sources, grouping 
data that conceptually belongs together. This grouping 
was based on the expected queries and how they access 
the data. For example, iFanzy uses the time ontology 
for time based reasoning. Therefore, it was decided to 
keep the time ontology separate, which means that only 
one (smaller) data set has to be queried when this time 
information is needed. Obviously, splitting off data 
sets has consequences for the queries: they need to be 
(transparently) rewritten and split up, fired to the 
partial data sets, and their results combined. Because 
vertical decomposition possibly distributes several 
properties of a class over different data sets, the 
original query has to be split up roughly along the 
same distribution. This entails identifying which 
properties reside in which data set, and subsequently 
isolating these properties (and the conditions acting 
upon these properties) in a single (partial) query. 
However, we deal with a tradeoff here. More 
decomposition might contribute to smaller repositories 
and therefore higher performance in those repositories, 
but the application’s complexity will rise as well as 
will the overhead time to join results from the different 
sources.   

To combine the results from such partial queries, 
the relation between these queries first has to be 
considered. More specifically, this means examining 
the path expressions used in the FROM clause. Figure 
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1a and 1b illustrate the four general possibilities and 
their corresponding split. As can be seen from the 
figures, path expressions addressing a common subject 
or object (i.e. specified by a shared variable in the 
partial queries) give rise to partial queries which are 
dependent on each other: the results of one partial 
query influence the result of the other partial query. 

 

 
Figure 1a. Possibilities for (SeRQL) query 

decomposition 
 

For example, in figure 1a Q1 is split up into Q1’ 
and Q1’’, using o1 as a shared variable; Q2’, Q2’’ and 
Q2’’’ share variable s1; in figure 1b, Q3’, Q3’’, Q3’’’ 
share variable o1. Different strategies to execute these 
partial queries exist. The most straightforward way is 
by performing a join on the result sets21, using the 
shared variable(s) as the join attribute(s) and the 
constraints regarding the shared variables as the join 
condition. For example, in figure 1a, for Q1’ and Q1’’ 
o1 is used as a join attribute. These join attributes are 
included in the SELECT clause of the partial queries so 
that they can be compared afterwards using the join 
condition. Any (other) constraints on the shared 

                                                        
21 Note that this join is thus not performed by Sesame, but by 

custom Java code. 

variables are subsequently eliminated from the queries, 
as they were already fulfilled in the partial queries. 

 

 
Figure 1b. Possibilities for (SeRQL) query 

decomposition 
 
As we noticed in iFanzy, in some cases smarter and 

more efficient strategies can be employed to combine 
the result sets. For example, if it is known beforehand 
that one of the result sets from a partial query will be 
significantly smaller, say a handful, it is more efficient 
to include the results of this set directly into the query 
to the other data set, thus additionally constraining it 
and significantly reducing the execution time of this 
query. This approach gives rise to a query pipeline 
(and thus a sequential process), where the results from 
the previous step are used as input for the next step.  

We exploited this approach in our use of WordNet 
together with the rest of the main program dataset. 
Instead of executing one query that searches for a 
program with terms that are connected to WordNet 
concepts that have certain restrictions, we first query 
WordNet to retrieve synonyms of input terms and then 
we use the results of that query as input for our query 
to the program data sources. 

There are two ways in which this last part can be 
implemented: either by including all of the results of 
WordNet in the program query at once, or to execute 
the program query for every synonym. We 
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experimented on our program data set to see what the 
differences for those two approaches are. The results 
can be found in table 3. 

  
Table 3. Average execution times for two 

alternative query approaches 
Query Execution time (ms) 
1 query 
5 synonyms 

3 597 

5 queries 
1 synonym 

14 412 

 
As can be seen from the results, the first approach 

can be favored over the second. This is because for 
each program resource the entire data source has to be 
traversed to make the necessary checks: when doing all 
these checks at once for each program resource (as is 
the case in the first approach) this traversal only has to 
be done once for each, while in the second approach all 
the program resources are checked (and therefore the 
graph traversed) every time a query is executed. 
However, when only requiring a limited amount of 
results, the execution of only one such query can be 
sufficient. For example, in the above experiment the 
query for the first synonym already returned 73 results. 
Such cases could greatly influence the average 
execution time of the second approach. In this 
particular case, the average execution time could be 
reduced by a factor of 5 (since only one of the five 
queries needs to be executed). In iFanzy, the first 
approach was used to combine the result sets from the 
program data sources and WordNet. 

The case of combining separate result sets (see Q4 
in figure 1b) consists of partial queries that are 
independent of each other, and therefore their result 
sets are independent as well. In this case, the partial 
queries can be parallelized and the results combined 
with a union. Sometimes, the assumption was that it 
was smarter to keep some data sets together. The BBC 
Backstage and XMLTV data sets, both representing 
broadcast information and transformed into the same 
RDF concepts, were kept in one single data set because 
of their conceptual relation and because, as a 
consequence, it was reasonable to assume that this data 
would mostly be needed together.  

Another example of vertical decomposition is the 
separation of the genre classification hierarchy. In 
iFanzy, users can select a genre and thus limit the 
broadcast shows (or movies) to the ones conforming to 
the specified genre. Based on the fact that we 
frequently required this information separately and 
retrieving the genre information from the full data set 
took a very long time, we decided to extract the genre 
hierarchy from this data set and put it in a separate 

store. After this first series of decompositions, we 
obtained the collection of data sets as shown in table 4. 
 

Table 4. iFanzy data set after first decompositions 
Data Source # Triples # Items 

IMDb data set 53 268 369 # Persons: 1 653 543 
# Movies: 976 174 
# Locations: 19 946 

WordNet 1 942 887 # Words:   78 761 
# Synsets: 104 433 

BBC Backstage 
+ XMLTV 

1 250 949 # Programs: 25 466  
on 137 channels 

TV-Anytime       
Genres 

4 859 # Genres: 685 

 
Analogous to the separation of the genre hierarchy, 

the location hierarchy was split off from the IMDb data 
set. This was done for the same reasons: it was 
frequently needed in separation, and retrieving location 
data from the IMDb data set took a very long time. 
 
5.3 Horizontal Decompositions 
 

When we considered the querying of the data set 
containing broadcast data (i.e. BBC Backstage and 
XMLTV) we observed that this presented a 
performance bottleneck (which was the opposite of the 
previous assumption). We opted for a horizontal 
decomposition, which split the broadcast data into two 
separate data sets. As was already mentioned before, 
horizontal decomposition decomposes a data set based 
on the relations between the resources; based on e.g. 
geographical similarity or popularity, resources are 
split off and put in separate data sets. 

For this particular decomposition, we used our 
knowledge of the original data sources and the queries 
posed on them, and split up the instances accordingly. 
This is advantageous when only requiring a limited 
amount of results (which is often the case in iFanzy), 
since in that case it suffices to query only one  
(smaller) data set, providing it contains the desired 
amount of results. Note that this is not the case for 
vertical decomposition, because resource properties 
can be spread over several data sets, thus requiring to 
query all the data sets containing (part of) the 
information. 

As was the case for vertical decomposition, a 
horizontal decomposition has consequences for the 
query execution process. In case of horizontally 
decomposed data sets, where data belonging to the 
same “schema” can be distributed across different data 
sets, the same (partial) query has to be sent to the 
relevant data sets. Therefore, dependency issues 
between partial queries do not have to be considered. 
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However, another problem arises: because instances 
belonging to (a certain part of) the schema cannot be 
localized to one particular data set, it cannot be 
determined (without a priori knowledge) where 
specific information can be found. The strategies 
tackling this problem differ in the manner they deal 
with this uncertainty. The simplest strategy queries 
every (decomposed) data set until enough results are 
found. For example, in iFanzy this strategy is applied 
when retrieving broadcast data from BBC Backstage 
and XMLTV. If possible, knowledge about (the results 
returned by) the queries can be used to give priority to 
some data sets that are most probable to contain 
answers. In iFanzy, this strategy is used to retrieve 
information from IMDb when priority is given to a 
data set containing popular movies (as will be 
explained later). A third strategy uses an indexing 
technique to compute this probability at runtime; in 
other words, it enables the identification of data sets 
that are more likely to contain results given a specific 
query. In iFanzy, the latter strategy has not yet been 
applied; this is future work. 

We set up some experiments to test this particular 
horizontal decomposition of broadcast data. A set of 
typical large queries was first sent to the combined data 
sets, and subsequently to the split data sets. This was 
repeated several times, and the average execution times 
are given in the table below: 
 
Table 5. Execution times of separate and combined 

XMLTV and BBC Backstage data set 
XMLTV 
(ms) 

BBC Backstage 
(ms) 

BBC Backstage 
+ XMLTV (ms) 

2142 551 2714 
 

From the figures, it can be concluded that the query 
to the decomposed data sets executes faster than the 
query on the combined data set. As already mentioned, 
since only a limited amount of results is needed, 
querying only one data set is sufficient when it returns 
the desired amount of results. However, even when the 
desired amount of results was not obtained from one 
data set, still a performance gain can be made, since 
the queries to both data sets can be performed in 
parallel. In other words, due to parallelization of the 
queries, the total execution time is equal to the 
execution time of the slowest data set22. However, 
because of the use of Ajax technology we are able to 
show results the moment they become available, thus 
for us latency is more important then total computation 

                                                        
22 Since the combination of the result sets is a union, this 

computation overhead is negligible. 

time. In this case the global latency equals the latency 
of the fastest set. 

The aforementioned decompositions gave rise to 
the data sets as seen in table 6. Compared to the 
previous data sets (see table 4), the BBC set and the 
XMLTV set are now separated, and the genre and 
location hierarchy have been split off from the main 
data set. 
 

Table 6. iFanzy data set after further 
decompositions 

Data Source # Triples # Items 
IMDb data set 53 208 444 # Persons: 1 653 543 

# Movies: 976 174 
WordNet 1 942 887 # Words:   78 761 

# Synsets: 104 343  
BBC 
Backstage 

83 871 # Programs: 1 565 
on 8 channels 

XMLTV 1 167 078 # Programs: 23 901  
on 129 channels 

Geo 59 925 # Locations: 19 946 
TV-Anytime 
Genres 

4 859 # Genres: 685 

 
We also observed that queries to the IMDb data set 

were too slow for real-time query answering. Based on 
studying the representative queries to be executed, and 
the queries actually performed by customers, we 
concluded that mainly a small popular subset of the 
movies is frequently requested. Therefore, we chose to 
perform a horizontal decomposition based on the 
popularity of the movies. As a criterion, in accordance 
with the desired application functionality, we used the 
votes that were issued by the IMDb users. Based on a 
stepwise restriction of the amount of movies via their 
popularity (see first two columns in table 7), we 
compared the amount of user queries still answerable 
by this subset with the average query response time for 
typical queries to the IMDb data set (third column), 
and decided to split off movies that have 500 or more 
votes from the main IMDb data set and put them in a 
separate data set.  

Since this IMDb subset only contains a fraction of 
the total amount of movies, this data set is not always 
sufficient to answer each user query. In that case, the 
main IMDb data set, which we still keep available, is 
consulted. Evidently, every time we need to query this 
(full) IMDb data set, we will surrender any 
performance gain made by employing the split off data 
set.  However, because this IMDb subset contains the 
movies that are most requested (i.e. the popularity of 
the movies), we are guaranteed that in most cases this 
data set will suffice. 

60



Note that these optimization steps lead to some 
space overhead because of some overlap in the split 
repositories (i.e. the connections). However this space 
overhead is no significant drawback given the speed 
increase. The initial database where all content resides 
in one big semantic repository comprised 7,9 GB, 
whereas the sum of the final decomposed set of 
repositories takes up 8,4 GB. 

 
Table 7. IMDb size and query execution times 

Minimum 
# of Votes 

# Movies Query execution 
time (ms) 

0 976 174 54 198 
1 261 749 14 832 
10 141 438 8 137 
25 82 996 4 322 
100 33 386 1 805 
500 11 500 678 
1000 7 173 487 
 

6. Reasoning Optimization 
 

Next to the concept of linked data, another 
important strength of the Semantic Web is its 
possibility to reason over facts. As the reasoning 
capabilities of RDF played a significant role in the 
choice for using semantic technology, implementing 
efficient reasoning into iFanzy was considered an 
important step in its development, and a necessary one 
to provide for a realistic performance. For example, the 
following (custom) entailment rules represent the 
transitivity of the partOf relationship: 

 

 

 
 
Two strategies can be considered when applying 

custom inferencing rules to an RDF data set. The first 
one consists of storing the closure of these rules in the 
data set, thus minimizing the run-time cost of 
inferencing (not taking into account the performance 
loss related to recalculating the closure after the 
addition of new data or when the data set has been 
updated). The second strategy consists of computing 
such inference rules at run-time, by translating them 
into the query and/or by using custom code. 

To decide for which set we calculate the closure in 
advance and which can we do on the fly, we need to 
inspect the data closely. Let us first consider the 

location hierarchy by means of the location 
“shepperton studios” in the UK: 
 

 
  

If we calculate the closure in advance, every 
program P which is annotated with “shepperton 
studios” will also be annotated with “shepperton”, 
“England” and “UK”. If the user now requests all 
programs annotated with “UK”, we also retrieve all 
programs P. However, if the closure for the locations 
hierarchy is not pre-calculated, every P will only be 
annotated with “shepperton studios”, and thus, to 
obtain the same result set, the inference-logic needs to 
be included in the query, which in practice leads to a 
huge WHERE clause explicitly enumerating all the 
locations. In table 8 we see the difference in average 
execution times for a location in “USA”. In the first 
column a pre-calculated closure is used; in the second 
column, all 8877 relevant locations are included in the 
WHERE clause.  
 

Table 8. Average execution times for queries with 
pre-calculated closure vs. manual reasoning 

(location) 
Pre-calculated 
closure (ms) 

Query with manual 
reasoning  (ms) 

2 375 140 818 
 

Because the performance clearly suffers from the 
extremely large WHERE clause, it is straightforward to 
assume that in this case pre-calculating the closure (for 
the location hierarchy) helps considerably. 

In case of the genre hierarchy however, we see a 
different story. When we compare the execution times 
for the pre-calculated closure and the reasoning 
included in the query (10 genres), we obtained the 
following results (see table 9). 

 
Table 9. Average execution times for queries with 

pre-calculated closure vs. manual reasoning (genre) 
Pre-calculated closure 
(ms) 

Query with manual 
reasoning (ms) 

3 352 3 375 
 

As can be seen from table 9, the difference in 
execution time between the two approaches is 
negligible, as opposed to the execution times in table 8. 
This can be explained by the difference in amount of 
results returned from the reasoning process (i.e. 8877 
locations in the first example vs. 10 genres in the 
second example). We can thus conclude that explicitly 
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storing the pre-calculated closure in the data set is 
worthwhile when the closure is relatively large. 
 
7. Applying Available Tools and 
Technologies 
 

To further improve query execution times, 
additional optimizations were applied. In particular, 
existing tools and technologies were evaluated for their 
usefulness: the use of relational databases, keyword 
indexing, use of limited queries and improvement to 
Sesame, the RDF storage and querying framework 
used in iFanzy. 
 
7.1. Use of Relational Databases to Store RDF 
Data 
 

Where the use of semantic data models offers great 
possibilities for linking data, current software for 
storing and manipulating semantic RDF data has its 
problems when it comes to performance for data sets, 
such as the one from real-world Web applications like 
iFanzy. One way to recover some of this performance 
loss is to store well-structured (strongly structured) 
parts of such a large data set in a relational database. It 
should be noted that many RDF data architectures like 
Sesame already allow the use of a relational database 
to store RDF data. However, such relational backends 
are typically very generic, and cannot be configured to 
store a given part of the RDF data in a specific way. 
Also, they do not allow for specific optimization 
techniques to improve query evaluation (e.g. indexing, 
de-normalization).  

Exploiting our knowledge of the strongly structured 
IMDb data set, we therefore devised an optimized 
relational database matching this specific structure. 
The links to other RDF data (kept in an RDF data set) 
were maintained by using resource URIs in the 
relational database, and referring to these URIs in the 
RDF stores (and vice versa). 
 

Table 10. Comparison of execution times between 
RDF data with and without relational database 

optimization 
Query IMDb 

response 
time (ms) 

IMDb with relational 
database optimization 
(ms) 

Query 1 2 157 117 
Query 2 1 135 417 
Query 3 11 265 3 252 
Query 4 648 12 
Query 5 14 344 3 495 

 

As can be seen from table 10, the performance gain 
that was achieved from this migration was significant. 
 
7.2. Use of Keyword Indices 
 

Indices in relational databases are data structures 
that are constructed to decrease access time to certain 
parts of the database. Analysis of the running iFanzy 
application showed that the free text search (available 
to the user in the form of a string search searching 
through all properties of programs like title, synopsis, 
person names, etc) is problematic when working with 
large data sets, since Sesame’s pattern matching 
facility has a performance linear to the size of the data 
set. As Sesame does not provide indexing support for 
terms and literals, we decided to build our own index 
specifically to speed up full text search queries. We did 
so using a relational database. For every program (both 
broadcast and movie) resource, we extracted the literal 
objects of the properties title, keywords, synopsis and 
associated people like actors, directors, presenters, 
etcetera. Subsequently, we parsed these literals (except 
for the associated people) using white space as a 
delimiter and filtered them using a stopword filter, 
retaining only the useful keywords. Every resource and 
keyword pair was then put in a relational database table 
containing an index on the keywords. Every search 
query issued by the user is first filtered using a 
stopword filter, and then (together with synonyms 
obtained from WordNet) sent to the MySQL database. 
Consequently, the result set of this query is a list of 
program URIs. The other constraints specified by the 
user are sent to the relevant Sesame data sets, also 
resulting in a list of resource URIs. The intersection of 
these two lists is afterwards returned as the complete 
result set. 

To test the performance gain, we executed a series 
of free text search queries over the IMDb data set. This 
lead to a spectacular performance increase for free text 
search queries, as can be seen in table 11. 

 
Table 11. Average execution times for free text 

search queries with and without index 
Without index (ms) With index (ms) 
57 726 731 3 193 

 
7.3. Use of Limit for Optimization 
 

Studying the representative queries in the 
application, we saw that a major optimization could be 
obtained by the use of limit and offset operators in 
queries (to the relational databases and Sesame 
repositories). Indeed, in most cases users do not inspect 
the whole result set, but only the first few result pages 
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(in the case of iFanzy, a result page contains 20 
results). By using a limit clause, the 
repository/database will be searched for matches until 
the number of results as specified in the limit clause is 
found. This can have a significant influence on 
performance, as the first X results may be found early 
on in the query execution process, while the whole data 
set needs to be inspected in order to obtain a complete 
result set. If the user requests the next page of results 
an offset is used: the first Y of matching results will be 
discarded by the database and the next X number of 
matching results will be returned. This results in re-
evaluating the query with a limit of X. Therefore, 
subsequent result pages will be more expensive to 
calculate. However, as in our experience users 
typically do not navigate beyond the first couple of 
results pages this in general does not reduce the overall 
performance of our system. The test results below 
illustrate the performance gain by including a limit 
clause (with increasing limit operands) in a typical 
iFanzy query executed on the IMDb data set: 
 
Table 12. Average execution times for queries with 

increasing limit operand 
Limit Average execution time (ms) 
10 595 
100 628 
1000 834 
No limit 1 665 

 
7.4. Sesame Versions 
 

During the development of iFanzy, in cooperation 
with the creators of Sesame, we started using Sesame 2 
when it was still in its alpha stages. One of the reasons 
the development of Sesame 2 was started were the 
limitations of the internal representations of the RDF 
model, which lead to limited query optimization 
possibilities and therefore limited scalability. Sesame 2 
was designed to eliminate these limitations. 

However, using alpha software also had its 
disadvantages. Besides frequent API changes that 
forced us to recode database calls and connections, the 
scalability of Sesame 2 proved problematic. While 
Sesame 2 does not have the same limitations as 
Sesame 1, Sesame 1 had been greatly optimized during 
the many years since its introduction, while the query 
optimization of Sesame 2 is still (onto this date) in its 
early stages. Because of this, Sesame 2 generally 
performed worse in practice than Sesame 1. The table 
below shows the average execution times of several 
typical iFanzy queries for the broadcast data set: 
 

Table 13. Sesame 1 vs. Sesame 2 
Query Sesame 1 (ms) Sesame 2 (ms) 
Query 1 621 1 776 
Query 2 1 599 2 256 
Query 3 1 909 3 798 

 
As can be seen from the results, performance 

dropped significantly when using Sesame 2. Therefore, 
we decided to revert most of the data sets (namely the 
BBC Backstage and XMLTV data sets) back to 
Sesame 1. On the other hand, Sesame 2 did have some 
useful features (e.g. the context mechanism) that are 
not available in Sesame 1; the data sets that were 
populated depending on these features, most notably 
context, were left in Sesame 2 (e.g. WordNet and the 
different ontologies such as genres and location). We 
do foresee a migration back to Sesame 2, when the 
performance of Sesame 2 will exceed that of Sesame 1.  
 
8. Conclusions and Future Work 
 

One of the greatest opportunities in using 
techniques from the Semantic Web in the engineering 
of Web applications is the possibility to link data, 
thereby increasing the total amount of knowledge that 
was available in the separate sources. Building real-life 
Web applications grounded on such huge sets of linked 
data however is far from trivial with the currently 
available technology and tools. In this article, we 
discussed the engineering of such large-scale and real-
life Web applications, with the focus on practical 
implementation strategies that make the applications 
work with the available technology. In summary, with 
all the data semantically linked and thus ready to be 
accessed, for any RDF/OWL-based application it 
remains a challenge to turn the (huge) single complete 
conceptual knowledge structure into parts that can be 
handled separately by the tools for data management 
and access. For this aim, we studied both vertical and 
horizontal decompositions of semantic data sets, 
discussed reasoning, and considered optimizations 
based on existing tools and technologies. The results 
from our research that we illustrated here were 
obtained in the context of representative data, and we 
have shown and substantiated with practical 
experiments that, using specific engineering steps and 
practical measures to increase performance, such real-
life applications are feasible. 

Where we have presented here a general recipe for 
engineering large-scale Web applications that exploit 
semantic linking while dealing with the inherent 
implementation and engineering challenges, we 
obviously will further develop and test the lessons 
learned from this experience. First of all by extending 
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them where possible (e.g. we plan a performance 
optimization step with parallel query evaluation and 
automatic load-balancing strategies). Second, by 
performing further experiments to expand the basis for 
conclusions, which includes applying and evaluating 
them in even more real-life scenarios. New 
applications with different constraints may of course 
give rise to new techniques that can be applied, and 
thus lead to an extension of the spectrum of solutions 
we can offer. As an example, we mention the use of 
OWLIM23 [9] in iFanzy, as it promises to improve 
query evaluation performance considerably. It will be 
interesting to see how this backend performs in the 
iFanzy setting, and what is needed in terms of 
engineering to turn the general possibilities of OWLIM 
into a concrete and specific advantage for this 
application. 
 
9. References 
 
[1] D.J. Abadi, A. Marcus, S. Madden, K.J. Hollenbach, 
“Scalable Semantic Web Data Management Using Vertical 
Partitioning”, Proceedings of the 33rd International 
Conference on Very Large Data Bases (DBLP), ACM, 
Vienna, Austria, (2007), pp. 411-422. 
 
[2] F. Abel, M. Frank, N. Henze, D. Krause, D. Plappert, P. 
Siehndel, “GroupMe! – Where Semantic Web meets Web 
2.0”, Proceedings of the 6th International Semantic Web 
Conference, LNCS 4825, Springer, Busan, Korea, (2007), 
pp. 871-878. 
 
[3] L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A. 
Chiarotto, A. Difino, B. Negro, “Architecture of a system for 
the generation of personalized Electronic Program Guides”, 
In Proceedings of the UM2001 Workshop on Personalization 
in Future TV, Sonthofen, Germany, (2001). 
 
[4] L. Aroyo, N. Stash, Y. Wang, P. Gorgels, L. Rutledge, 
“CHIP Demonstrator: Semantics-Driven Recommendations 
and Museum Tour Generation”, Proceedings of the 6th 
International Semantic Web Conference, LNCS 4825, 
Springer, Busan, Korea, (2007), pp. 879-886. 
 
[5] P. Bellekens, L. Aroyo, G.J. Houben, A. Kaptein, K. van 
der Sluijs, “Semantics-Based Framework for Personalized 
Access to TV Content: The iFanzy Use Case”, Proceedings 
of the 6th International Semantic Web Conference, LNCS 
4825, Springer, Busan, Korea (2007), pp. 887-894. 
 
[6] P. Bellekens, K. van der Sluijs, L. Aroyo, G.J. Houben, 
“Engineering Semantic-Based Interactive Multi-device Web 
Application”, Proceedings of the 7th International 
Conference on Web Engineering (ICWE 2007), LCNS 4607, 
Springer, Como, Italy, (2007), pp. 328-342. 
 

                                                        
23 http://www.ontotext.com/owlim/big/index.html 

[7] Y. Blanco-Fernández, J.J. Pazos-Arias, A. Gil-Solla, M. 
Ramos-Cabrer, M. López-Nores, “Bringing together content-
based methods, collaborative filtering and semantic inference 
to improve personalized TV”, Proceedings of the 4th 
European Conference on Interactive TV (EuroITV), Athens, 
Greece, (2006), pp. 174-182. 
 
[8] T. Heath, E. Motta, “Revyu.com: A Reviewing and 
Rating Site for the Web of Data”, Proceedings of the 6th 
International Semantic Web Conference, LNCS 4825, 
Springer, Busan, Korea, (2007), pp. 895-902. 
 
[9] A. Kiryakov, D. Ognyanov, D. Manov, “OWLIM – a 
Pragmatic Semantic Repository for OWL”, Proceedings of 
International Workshop on Scalable Semantic Web 
Knowledge Base Systems (SSWS 2005), WISE 2005, LNCS 
3807, Springer-Verlag, New York City, USA (2005), pp. 
182-192. 
 
[10] D. O'Sullivan, B. Smyth, D.C. Wilson, K. Mcdonald, A.  
Smeaton, “Improving the Quality of the Personalized 
Electronic Program Guide”, User Modeling and User-
Adapted Interaction 14, 1, Kluwer Academic Publishers, 
(2004), pp. 5-36. 
 
[11] G. Ramakrishnan, J. Gehrke, Database Management 
Systems (International Edition), McGraw-Hill Inc., ISBN 0-
07-246563-8 (1999). 
 
[12] K. Rohloff, M. Dean, I. Emmons, D. Ryder, J. Sumner, 
“An Evaluation of Triple-Store Technologies for Large Data 
Stores”, In On the Move to Meaningful Internet Systems: 
OTM 2007 Workshops, LNCS 4806, Springer, Vilamoura, 
Portugal, (2007), pp. 1105-1114. 
 
[13] J. Seidenberg, A. Rector, “Web ontology segmentation: 
analysis, classification and use”, In Proceedings of the 15th 
international Conference on World Wide Web (WWW 
2006), ACM, Edinburgh, Scotland, (2006), pp. 13-22. 
 
[14] M. van Setten, “Supporting People In Finding 
Information: Hybrid Recommender Systems and Goal-Based 
Structuring”, Telematica Instituut Fundamental Research 
Series, No.016 (TI/FRS/016), Universal Press, (2005). 
 
[15] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. 
Cyganiak, Z.G. Ives, “DBpedia: A Nucleus for a Web of 
Open Data”, Proceedings of the 6th International Semantic 
Web Conference, LNCS 4825, Springer, Busan, Korea,  
(2007), pp. 722-735. 
  
[16] H. Stuckenschmidt, M. Klein, “Structure-Based 
Partitioning of Large Concept Hierarchies”, Proceedings of 
the Third International Semantic Web Conference (ISWC 
2004), LNCS 3298, Springer, Hiroshima, Japan, (2004), pp. 
289-303. 
 

64


