
Achieving Efficient Access to Large Integrated Sets of Semantic Data in Web
Applications

Pieter Bellekens1, Kees van der Sluijs1, William van Woensel2,
Sven Casteleyn2, Geert-Jan Houben1,2

1Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
2Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

{p.a.e.bellekens, k.a.m.sluijs, g.j.houben}@tue.nl,
 {William.Van.Woensel, Sven.Casteleyn, Geert-Jan.Houben}@vub.ac.be

Abstract

Web-based systems can exploit Semantic Web-
based approaches to link data and thus create
applications that make the most out of the combination
and integration of different sources and background
knowledge. While a lot of attention is paid to the
opportunities that this linking of data on the Web
provides, the reality of implementing such solutions
with currently available semantic technologies creates
a serious engineering challenge. In developing such
applications in a commercial setting, we have been
confronted with requirements and conditions that show
the limitations of current technologies for this type of
Web applications. Using our experience from iFanzy,
we illustrate in this paper the issues and steps in
turning the concept of access to semantically
integrated content into solutions that use available
technology.

1. Introduction

Many Web applications today are characterized by
the integrated use of data from several already
available sources or applications. Their engineering
therefore includes two important steps in the
specification and subsequent efficient implementation
of that integration. More and more of them use
techniques from the Semantic Web initiative for this
purpose. One of the strengths of the Semantic Web is
the ability to combine and integrate data from different
data sources, thereby increasing the total amount of
knowledge that was contained in the separate sources.
By obtaining more, derived knowledge out of the
combination of data, applications can offer more and
new functionality compared to the original individual
sources or applications.

When we observe current Semantic Web-based
applications, we see that most of the applications using
Semantic Web data do this on a relatively small scale.
However, one of the main attractions of such Semantic
Web-based applications is that, like with the ‘normal’
World Wide Web, they can operate in a ubiquitous and
large-scale setting. This certainly applies now that
many large Semantic Web data sources are becoming
available for integration, either in native RDF or as a
transformation of an originally differently structured
source. Example sources are DBpedia [15] and IMDb1
which have over 218 million triples and 53 million
triples respectively. Integrating and combining these
data sources into a Web application poses challenging
engineering problems.

 A straightforward, first engineering approach to
implement such Web applications is to put everything
in currently available RDF repositories. This is an
interesting approach as it allows us to obtain additional
functionality in the application in terms of knowledge
derived from the combination of the included sources.
However, this approach leads to huge data sets that
pose significant scalability problems (see e.g. [1] for an
overview of problems with current RDF storage
solutions). Therefore, this first step of specifying the
integration and combination has to be followed by a
second engineering step that considers the actual
efficient realization and implementation of this
integration.

We have gained experience with this realization
step in several systems, e.g. CHIP [4], iFanzy [5].
There we experienced what was needed to achieve
efficient access to the large integrated sets of semantic
data that are used in our Web applications to deliver
the desired functionality.

1 http://imdb.com/

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.18

52

 In this paper we report on our experience with the
realization of iFanzy (developed in collaboration with
Stoneroos Interactive TV, Ltd.2). iFanzy3 is a
personalized TV guide application aimed at offering
users television content in a personalized and context-
sensitive way. It consists of a client-server system with
multiple clients and devices such that the user can
ubiquitously use TV set-top box, mobile phone and
Web-based applications to select and receive
personalized TV content. TV content and background
data from various heterogeneous sources are integrated
to provide a transparent knowledge structure which
allows the user to navigate and browse the vast content
sets nowadays available. Semantic Web techniques are
applied to make the interconnections between the
various data and content. The resulting RDF/OWL
knowledge structure is the basis for iFanzy's main
functionality like semantic searches of the broadcast
content and execution of context-sensitive
recommendations. iFanzy differs from other semantic
TV recommender systems, like for instance presented
in [7], [10] and [3], because we focus on very large
datasets (and live datasources) and integration of that
information. We also use the larger structure of our
integrated set for recommendation. For the
recommendation part of our application we can reuse
many of the works on recommendation in the TV
domain. Think for instance of MovieLens4 that makes
use of collaborative filtering. For an overview of
different recommendation strategies e.g. refer to [14].

In [6] we have described the first step in the
conception of iFanzy, which describes at the functional
level how the application combines data from several
sources to provide the desired functionality. As this
system is moving towards a real commercial
application, we have to ensure that the architecture of
the system can meet the demands of a large-scale Web-
based usage. We note here that in a lot of comparable
work, this ambition of efficient access is often
secondary to the ambition to achieve “interesting”
derived knowledge. With iFanzy we put in
considerable effort to realize significant improvements
in the engineering of the efficient access. As iFanzy
was nominated for the Semantic Web Challenge 2007
[5] and ended runner-up, it poses a good representative
application and we used it in this research to
experiment with this important and often underrated
engineering step, and in this paper we share our
experiences and results.

2 http://www.stoneroos.nl/
3 http://ifanzy.nl/
4 http://www.movielens.org/

The paper describes how the general recipe to link
the data at the semantic level in one’s Web application
leads to concrete challenges for realizing efficient
access to the data on real-time timescales. We do so on
the basis of our concrete experience with representative
data from the iFanzy research, as this is not only a very
characteristic example but also a challenging one for
which the experimental documentation of the
engineering steps can benefit a large class of similar
applications.

If we look at related work we see that some
approaches exist in trying to handle large ontological
structures, for instance [13] and [16] which both deals
with large ontologies, both using a data partitioning
approach to increase performance. In contrast, we
focus less on size of the ontology but more on the
instances of those ontologies and on a much larger
scale: where [13] and [16] deal with thousands of
elements we look at data with tens of millions of
elements. However, the techniques they use are still
interesting and to a small extend applicable to our case.
Also some semantic repositories focus on scalability
using big datasets in sizes that are relevant for us (e.g.
OWLIM [9], for a performance overview see [12]).
These systems mainly focus on scalability in loading
times and inference capabilities. Even though these
systems are very interesting and we regularly test new
systems on performance they currently still fall short
with our stringent real-time requirements on query
evaluation for the size of datasets and complexity of
queries we are facing.

This paper is structured as follows. Section 2
explains the general recipe for semantically integrating
data from different sources and applications. Section 3
shortly introduces the engineering steps required for
efficient access to integrated data. Section 4 explains
the first phase, data preparation. Section 5 elaborates
on the decomposition of data sources for better
performance and on the subsequent query splitting.
Section 6 explains optimizations concerning reasoning,
and section 7 discusses the use of existing techniques
and tools to further improve performance. Finally,
section 8 presents conclusions and future work.

2. Linking Data and Integration

Before we can turn to the second step of
engineering for achieving efficient access to the linked
data, we need to set the stage by shortly explaining the
general recipe for the first step of semantically
integrating data from different sources and
applications. As we mentioned before, we illustrate and
document this here in this paper for data obtained from
iFanzy as one possible representative, but this general

53

recipe we have also used in the development of other
systems, like CHIP [4].

The main data sources used in iFanzy are the BBC
Backstage5 data set, the XMLTV6 data set (which was
obtained from crawling several online TV guides), the
IMDb schema and data set, the TV Anytime7 genre
classification, the OWL Time ontology8, a Geo
Ontology (which we constructed on basis of IMDb
location information), and RDF WordNet9.

In abstract, the recipe for semantic integration
consists of four steps:
1. Making TV metadata available in RDF/OWL: First,

we make the relevant metadata from various data
sources available in RDF/OWL. For example, we
use three live data sources, online TV guides in
XMLTV format (e.g. 1.2M RDF triples for the
daily updated programs), online movie databases
such as IMDb in custom text format (e.g. 53M
triples including trailers from Videodetective.com),
and broadcast metadata available from BBC-
backstage in TV-Anytime format (e.g. 92K triples,
daily updated). All these sets of metadata give us a
quite detailed description of available TV
programming and related material.

2. Making relevant vocabularies available in
RDF/OWL: Having the metadata available, it is
also necessary to make relevant vocabularies
available in RDF/OWL. We created a genre
ontology (5K triples) based on the TV-Anytime
genre hierarchy that is used to describe all the
genres that are used in our metadata sets (i.e.
IMDb, XMLTV and BBC Backstage). We used the
SKOS vocabulary10 to express the relationships
between genres. All these genres play a role in the
classification of the TV content and the user's
likings (in order to support the recommendation).
For time and location-based reasoning we use the
W3C Time ontology11 (1.5K triples) and the
location hierarchy as used in IMDb (60K triples)
respectively. We also used WordNet 2.04 as
published by W3C (2M triples) to exploit language
relations like synonyms and hyponyms.

3. Aligning and enriching vocabularies/metadata:
Here we did (a) alignment of genre vocabularies,
(b) semantic enrichment of the genre vocabulary in

5 http://backstage.bbc.co.uk/
6 http://xmltv.org/wiki/
7 http://www.tv-anytime.org/
8 http://www.w3.org/TR/owl-time/
9 http://www.w3.org/TR/wordnet-rdf/
10 http://www.w3.org/TR/skos-reference/
11 http://www.w3.org/TR/owl-time/

TV-Anytime, and (c) semantic enrichment of TV
metadata with IMDb movie metadata.

a. First, aligning our genre ontology to the genre
vocabularies used in the metadata sources was
a small semi-automated exercise in which
several translations were specified towards the
TV-Anytime vocabulary, such as the
associations between xmltv:documentaire
and tva:documentary, between
IMDb:thriller and tva:thriller, and
between IMDb:sci-fi and
tva:science_fiction. Simple matches
like IMDb:action to tva:action were
executed automatically by a string matching
algorithm, while less straightforward matches
were executed by a domain expert.

b. Second, for the semantic enrichment of the
genre vocabulary,

i. skos:narrower relations are
introduced based on the original TV-
Anytime XML genre hierarchy, for
example between tva:sports and
tva:soccer.

ii. skos:related relations are defined
based on partial label matching, for
example between tva:sport_news and
tva:sport, or by using background
knowledge of a domain expert, e.g.
between sibling genres like tva:rugby
and tva:American_football.

c. Third, in terms of semantic enrichment of the
TV metadata (that can come from different
TV guides in different languages) we use an
automated algorithm to couple the programs
that happen to be movies to the corresponding
movie information in the IMDb database. As
titles might not also be matched one-on-one,
consider for instance the semantic equivalent
titles "Buono, il brutto, il cattivo, Il (1966)"
and "The Good, the Bad and the Ugly", we
consider not only the title fields, but also use
AKA-title information and information on the
director to be certain that a program matches a
movie.

4. Using the resulting RDF/OWL graph for
recommendations: To recommend TV programs or
movies, the resulting RDF/OWL graph is extended
with the user model knowledge such that the
eventual RDF/OWL knowledge structure can be
directly used for the recommendation. What
happens is that when a specific user rates a program
P, implicitly program P is rated together with all
programs (and actors, directors and persons) that
are related in the knowledge structure. Moreover,
all programs with a genre that is related to a genre

54

of P are rated, as well as the genres themselves via
skos:related and skos:narrower relations. In
this way, ratings are added within the user's
context. When querying the graph, query expansion
is used, exploiting ontology relationships like
synonym relations from WordNet and the
skos:narrower and skos:related relationships
from the vocabularies.
Now that we have described the first step, namely

the semantic linking of the data to arrive at the derived
knowledge for the recommendations in the system, we
turn to the concrete reality of realizing acceptable
efficiency for this conceptual solution.

3. Engineering Efficient Access to the
Integrated Data

The iFanzy scenario has given us a realistic
challenge of a large, connected set of data in a Web
application for which it is necessary to make the
querying and retrieval of this data as efficiently as
possible, in order to meet the demands of the
application and its usage. Therefore, for the purpose of
this presentation of experience results, we concentrate
on the efficient access to the set of RDF-based data
that constitutes the essence of this Web application,
and disregard application-specific constraints about
freshness of data which are not relevant for the general
consideration of how to realize the efficient access.

In our consideration of steps to improve access
efficiency, we look at the following issues:

1. Preparing the data in the proper format
2. Decomposing the combined data (graph) model

into connected parts and rewriting queries in
accordance with the data decomposition

3. Implementing inference
4. Using currently available tools and technology
In the next sections, we will consider each of these

issues in isolation and thus document our
(representative) experience for this concrete and
illustrative data set. It shows how we start at the large
RDF data set that results from the semantic integration
and that is fit for the desired recommendations, and
how we then turn this conceptual data set into a
concrete system that uses currently available
technology.

4. Data Preparation

A first issue to consider is the way in which the
data is obtained in the application. In a realistic setting,
data sources typically reside in different (physical)
locations and are described in different (non-

compatible) formats and schemas. In general, even
when compatible with Semantic Web languages and
standards, these raw data sources first need to be
harmonized in order to be able to evaluate complex
source-transgressing queries. A first step to harvest the
decentralized knowledge is thus a data preparation
phase, in which the data from the different semantic
data sources are prepared for unified processing. The
following data preparation steps were performed for
the iFanzy sources:

- Data availability: The data is made available from
the original source. In the ideal case, the original
source is in Semantic Web format (i.e. RDF(S) /
OWL), and offers direct possibility for remote
querying (e.g. using a remote query service such
as the Sesame12 HTTP server or Virtuoso
SPARQL Query Service13). In general, as was the
case for iFanzy sources, remote sources do not
offer this functionality. Therefore, data import is
the most viable solution. In some cases the data is
readily available (e.g. WordNet in RDF/OWL can
be downloaded as a zip file14), in other cases,
screen scrapers were needed to retrieve the data
(e.g. we originally developed a scraper for the
IMDb website). Note that the preferred or needed
solution differs depending on whether one wants
to have the entire data set available or wants to be
able to query the data set with individual queries.

- Data conversion: Once the data is retrieved, we
need to convert it into the correct RDF/OWL
format. This conversion naturally depends on the
initial format. In the case of WordNet the format
was already RDF/OWL, in other cases a
transformation was required. The TV-Anytime
XML format retrieved from BBC Backstage or
provided by the crawlers was transformed into our
RDF/OWL format using an XSLT transformation.
For IMDb, transforming the available plain text
files to our RDF/OWL graph proved to be more
challenging. In total there are 49 text files, each
containing all the data on a certain domain (e.g.
actors, producers, movies, countries, genres,
ratings, quotes…). The files are of varying sizes,
some quite large (e.g. the actors file is up to 360
MB). Every ‘object’ (a movie, an actor…) in those
files has a unique identifier which is used
throughout the other files. Parsers were written to
parse each different file, exporting the required
RDF/OWL format; a labor-intensive job.

12 http://www.openrdf.org/
13 http://docs.openlinksw.com/virtuoso/
14 http://www.w3.org/2001/sw/BestPractices/WNET/wn-

conversion.html

55

- Data integration: Once the data is transformed in
RDF/OWL format, the different sources need to be
integrated. This may require transforming the
names and structure for certain concepts or
properties, matching of resources from different
sources and eliminating duplicate classes
representing the same real-world concepts. For
example, for the enrichment of the TV metadata
(that can come from different online TV guides in
different languages) we linked movie programs to
the IMDb metadata, taking into account title data
as well as AKA-titles and director information.
For the XML grabber programs all time fields
(startTime, endTime, duration…) are exposed as
XML datetime/duration types, which we convert
to a Time Ontology instance.

When we compare this to current examples of
applications that use semantic content, we observe that
most of them have such a data preparation phase.
Considering for example some other representative
applications of the last Semantic Web Challenge15, we
also recognize the steps described above. GroupMe!
[2] is a Web 2.0 style application that enables users to
search for items from various sources (Google, Flickr,
etc) and allows creating and tagging of groups of such
resources, in addition to tagging the individual
resources. GroupMe! starts by transforming any
existing (structured) descriptions from the sources to
RDF data, using ontologies that are consistent with the
type of the resource. For example, Flickr-specific
descriptions are copied into a well-defined RDF
description using the Dublin Core16 vocabulary.
Revyu [8] allows users to review and rate arbitrary
items, providing a description, tags and URIs where
related information can be found. Additional
information is subsequently derived from various data
sources, such as DBPedia or from the supplied URIs.
In the latter case, the linked HTML pages are scraped
(data import), the relevant data is converted to RDF
format (data conversion) and subsequently integrated
in the local semantic data store (data integration). For
example, when an item is tagged as a book, the HTML
pages provided with the description are scraped. When
an ISBN number is found, an rdf:type property is
added to the data store stating that the item is indeed a
book.

5. Decomposition in Sources and Querying

As we motivated in the previous section, a first step
in harvesting the strength of the Semantic Web lies in

15 http://challenge.semanticweb.org/
16 http://dublincore.org/

making different data sources compatible and
combining them. While feasible for smaller-scaled
projects, we will show in section 5.1 that this approach
fails when working with real-life (huge) data sets.
Therefore, a logical and necessary step to increase
performance was to decompose the main data set into
several smaller sets, thus making them practically more
manageable by existing RDF storage and querying
frameworks (e.g. Sesame and Jena17). The main
method of operation is to consider which smaller parts
of the data are queried regularly together: splitting
them off in a smaller store with an increased
performance for these queries, while maintaining the
possibility to link and combine query results at the
global level, can lead to an increase of performance for
the overall system.

Drawing from work in relational databases (see e.g.
[11]), such decompositions can be performed in two
ways. Vertical, property-based decomposition in
databases is based on the schema; instances related to
certain classes and properties are split off from the data
set. We will discuss this in section 5.2. Horizontal,
instance-based decomposition is based on the
resources: instances that are related in some way (e.g.
via geographical similarity or specific knowledge
about the typical queries), are split off from the data
set. We will discuss that in section 5.3. All the
experiments described in this section are performed
using Sesame as an RDF storage and querying
framework and SeRQL18 as its associated and
representative query language.

5.1 A single data set

As we saw earlier, real-life data sources can be

huge. WordNet consists of almost 2 million triples; the
IMDb data set we worked with contained over 53
million triples. Consequently, combining several of
these sources, thereby linking data to be able to infer
additional knowledge, induces serious performance
considerations. During our experiments we noticed that
in this setting, using realistic queries and data sources,
performance and scalability indeed became critical
issues. We also saw, for example when discussing with
tool and technology providers, that these scalability
problems in Semantic Web-based applications did not
yet get the necessary attention to solve them in general.
This might be in part because many such applications
are created in a research setting, where examples are
used that avoid the typical scalability and performance

17 http://jena.sourceforge.net
18 Its current implementation in Sesame is more mature than that of

the SPARQL W3C recommended query language.

56

problems that arise when employing large RDF data
sets.

The straightforward and most common approach,
which is successfully applied in such smaller-scaled
projects, is to combine all data, including instance data
and schema data, in one single data source. Applying
this approach to the case of the iFanzy data lead to the
following huge data set (table 1).

Table 1. Combined iFanzy data set

Data Source #Triples # Items
IMDb
+BBC Backstage
+XMLTV
+Ontologies

54 525 724 # Persons: 1 653 543
Movies: 976 174
Locations: 19 946
Time: 1 547
Genres: 685
Programs: 25 466

To test the feasibility of this first scenario for

iFanzy, we executed the following four typical iFanzy
queries with increasing time-complexity19:

• Query1: All programs with the genre
‘drama’ (or one of its subgenres).

• Query2: All programs with the genre
‘drama’ and the keyword ‘wood’ in the
program metadata (title, synopsis and
keywords)

• Query3: All programs with the keyword
‘wood’ in the program metadata (title,
synopsis and keywords)

• Query4: All programs with the genre
‘drama’ and the keyword ‘wood’ in the
program metadata or the person metadata
(person name)

As for all experiments reported in this paper, each
query was executed several times and the average
execution times are reported. We also made sure that
there was no caching effect that could influence our
results. All queries were executed on Fedora Core 4
Linux system with 1 GB of main memory and a
Intel(R) Pentium(R) 4 CPU running at 3.00GHz20. The
average execution times for this experiment are given
in table 2.

Although combining the different data sets was a
necessary and beneficial step from a point of view of
increasing the available knowledge, as we can see from
the results below, applications employing huge data
sets such as iFanzy suffer considerable performance
problems. Even for the simplest queries, execution

19 Note that we do not display the actual SeRQL queries here

because of their length.
20 Note for the database systems we used multi core CPU systems

hardly bring performance gain

times quickly exceed the acceptable thresholds for real-
time environments.

Table 2. Average execution times of typical iFanzy

queries
Query Average execution time (ms)
Query1 31 526
Query2 138 354
Query3 224 663
Query4 19 280 121

5.2 Vertical Decompositions

As already explained in the introduction, one way
of decomposing data sets is by applying vertical
decomposition: based on the “schema”, certain classes
and properties, together with the instances that go with
them, are split off from the data set. Do note that in
semantic databases like Sesame, there is no way to
define ‘views’ like commonly used in relational
databases. So querying a part of a triple store can be
done either by adding extra restrictions in the where-
clause or to physically divide one store into two new
stores. In case of large data sets the second option can
be preferred because semantic databases tend to get
very slow when large. We applied this idea to split the
data source in a set of smaller data sources, grouping
data that conceptually belongs together. This grouping
was based on the expected queries and how they access
the data. For example, iFanzy uses the time ontology
for time based reasoning. Therefore, it was decided to
keep the time ontology separate, which means that only
one (smaller) data set has to be queried when this time
information is needed. Obviously, splitting off data
sets has consequences for the queries: they need to be
(transparently) rewritten and split up, fired to the
partial data sets, and their results combined. Because
vertical decomposition possibly distributes several
properties of a class over different data sets, the
original query has to be split up roughly along the
same distribution. This entails identifying which
properties reside in which data set, and subsequently
isolating these properties (and the conditions acting
upon these properties) in a single (partial) query.
However, we deal with a tradeoff here. More
decomposition might contribute to smaller repositories
and therefore higher performance in those repositories,
but the application’s complexity will rise as well as
will the overhead time to join results from the different
sources.

To combine the results from such partial queries,
the relation between these queries first has to be
considered. More specifically, this means examining
the path expressions used in the FROM clause. Figure

57

1a and 1b illustrate the four general possibilities and
their corresponding split. As can be seen from the
figures, path expressions addressing a common subject
or object (i.e. specified by a shared variable in the
partial queries) give rise to partial queries which are
dependent on each other: the results of one partial
query influence the result of the other partial query.

Figure 1a. Possibilities for (SeRQL) query

decomposition

For example, in figure 1a Q1 is split up into Q1’
and Q1’’, using o1 as a shared variable; Q2’, Q2’’ and
Q2’’’ share variable s1; in figure 1b, Q3’, Q3’’, Q3’’’
share variable o1. Different strategies to execute these
partial queries exist. The most straightforward way is
by performing a join on the result sets21, using the
shared variable(s) as the join attribute(s) and the
constraints regarding the shared variables as the join
condition. For example, in figure 1a, for Q1’ and Q1’’
o1 is used as a join attribute. These join attributes are
included in the SELECT clause of the partial queries so
that they can be compared afterwards using the join
condition. Any (other) constraints on the shared

21 Note that this join is thus not performed by Sesame, but by

custom Java code.

variables are subsequently eliminated from the queries,
as they were already fulfilled in the partial queries.

Figure 1b. Possibilities for (SeRQL) query

decomposition

As we noticed in iFanzy, in some cases smarter and

more efficient strategies can be employed to combine
the result sets. For example, if it is known beforehand
that one of the result sets from a partial query will be
significantly smaller, say a handful, it is more efficient
to include the results of this set directly into the query
to the other data set, thus additionally constraining it
and significantly reducing the execution time of this
query. This approach gives rise to a query pipeline
(and thus a sequential process), where the results from
the previous step are used as input for the next step.

We exploited this approach in our use of WordNet
together with the rest of the main program dataset.
Instead of executing one query that searches for a
program with terms that are connected to WordNet
concepts that have certain restrictions, we first query
WordNet to retrieve synonyms of input terms and then
we use the results of that query as input for our query
to the program data sources.

There are two ways in which this last part can be
implemented: either by including all of the results of
WordNet in the program query at once, or to execute
the program query for every synonym. We

58

experimented on our program data set to see what the
differences for those two approaches are. The results
can be found in table 3.

Table 3. Average execution times for two

alternative query approaches
Query Execution time (ms)
1 query
5 synonyms

3 597

5 queries
1 synonym

14 412

As can be seen from the results, the first approach

can be favored over the second. This is because for
each program resource the entire data source has to be
traversed to make the necessary checks: when doing all
these checks at once for each program resource (as is
the case in the first approach) this traversal only has to
be done once for each, while in the second approach all
the program resources are checked (and therefore the
graph traversed) every time a query is executed.
However, when only requiring a limited amount of
results, the execution of only one such query can be
sufficient. For example, in the above experiment the
query for the first synonym already returned 73 results.
Such cases could greatly influence the average
execution time of the second approach. In this
particular case, the average execution time could be
reduced by a factor of 5 (since only one of the five
queries needs to be executed). In iFanzy, the first
approach was used to combine the result sets from the
program data sources and WordNet.

The case of combining separate result sets (see Q4
in figure 1b) consists of partial queries that are
independent of each other, and therefore their result
sets are independent as well. In this case, the partial
queries can be parallelized and the results combined
with a union. Sometimes, the assumption was that it
was smarter to keep some data sets together. The BBC
Backstage and XMLTV data sets, both representing
broadcast information and transformed into the same
RDF concepts, were kept in one single data set because
of their conceptual relation and because, as a
consequence, it was reasonable to assume that this data
would mostly be needed together.

Another example of vertical decomposition is the
separation of the genre classification hierarchy. In
iFanzy, users can select a genre and thus limit the
broadcast shows (or movies) to the ones conforming to
the specified genre. Based on the fact that we
frequently required this information separately and
retrieving the genre information from the full data set
took a very long time, we decided to extract the genre
hierarchy from this data set and put it in a separate

store. After this first series of decompositions, we
obtained the collection of data sets as shown in table 4.

Table 4. iFanzy data set after first decompositions
Data Source # Triples # Items

IMDb data set 53 268 369 # Persons: 1 653 543
Movies: 976 174
Locations: 19 946

WordNet 1 942 887 # Words: 78 761
Synsets: 104 433

BBC Backstage
+ XMLTV

1 250 949 # Programs: 25 466
on 137 channels

TV-Anytime
Genres

4 859 # Genres: 685

Analogous to the separation of the genre hierarchy,

the location hierarchy was split off from the IMDb data
set. This was done for the same reasons: it was
frequently needed in separation, and retrieving location
data from the IMDb data set took a very long time.

5.3 Horizontal Decompositions

When we considered the querying of the data set
containing broadcast data (i.e. BBC Backstage and
XMLTV) we observed that this presented a
performance bottleneck (which was the opposite of the
previous assumption). We opted for a horizontal
decomposition, which split the broadcast data into two
separate data sets. As was already mentioned before,
horizontal decomposition decomposes a data set based
on the relations between the resources; based on e.g.
geographical similarity or popularity, resources are
split off and put in separate data sets.

For this particular decomposition, we used our
knowledge of the original data sources and the queries
posed on them, and split up the instances accordingly.
This is advantageous when only requiring a limited
amount of results (which is often the case in iFanzy),
since in that case it suffices to query only one
(smaller) data set, providing it contains the desired
amount of results. Note that this is not the case for
vertical decomposition, because resource properties
can be spread over several data sets, thus requiring to
query all the data sets containing (part of) the
information.

As was the case for vertical decomposition, a
horizontal decomposition has consequences for the
query execution process. In case of horizontally
decomposed data sets, where data belonging to the
same “schema” can be distributed across different data
sets, the same (partial) query has to be sent to the
relevant data sets. Therefore, dependency issues
between partial queries do not have to be considered.

59

However, another problem arises: because instances
belonging to (a certain part of) the schema cannot be
localized to one particular data set, it cannot be
determined (without a priori knowledge) where
specific information can be found. The strategies
tackling this problem differ in the manner they deal
with this uncertainty. The simplest strategy queries
every (decomposed) data set until enough results are
found. For example, in iFanzy this strategy is applied
when retrieving broadcast data from BBC Backstage
and XMLTV. If possible, knowledge about (the results
returned by) the queries can be used to give priority to
some data sets that are most probable to contain
answers. In iFanzy, this strategy is used to retrieve
information from IMDb when priority is given to a
data set containing popular movies (as will be
explained later). A third strategy uses an indexing
technique to compute this probability at runtime; in
other words, it enables the identification of data sets
that are more likely to contain results given a specific
query. In iFanzy, the latter strategy has not yet been
applied; this is future work.

We set up some experiments to test this particular
horizontal decomposition of broadcast data. A set of
typical large queries was first sent to the combined data
sets, and subsequently to the split data sets. This was
repeated several times, and the average execution times
are given in the table below:

Table 5. Execution times of separate and combined

XMLTV and BBC Backstage data set
XMLTV
(ms)

BBC Backstage
(ms)

BBC Backstage
+ XMLTV (ms)

2142 551 2714

From the figures, it can be concluded that the query
to the decomposed data sets executes faster than the
query on the combined data set. As already mentioned,
since only a limited amount of results is needed,
querying only one data set is sufficient when it returns
the desired amount of results. However, even when the
desired amount of results was not obtained from one
data set, still a performance gain can be made, since
the queries to both data sets can be performed in
parallel. In other words, due to parallelization of the
queries, the total execution time is equal to the
execution time of the slowest data set22. However,
because of the use of Ajax technology we are able to
show results the moment they become available, thus
for us latency is more important then total computation

22 Since the combination of the result sets is a union, this

computation overhead is negligible.

time. In this case the global latency equals the latency
of the fastest set.

The aforementioned decompositions gave rise to
the data sets as seen in table 6. Compared to the
previous data sets (see table 4), the BBC set and the
XMLTV set are now separated, and the genre and
location hierarchy have been split off from the main
data set.

Table 6. iFanzy data set after further
decompositions

Data Source # Triples # Items
IMDb data set 53 208 444 # Persons: 1 653 543

Movies: 976 174
WordNet 1 942 887 # Words: 78 761

Synsets: 104 343
BBC
Backstage

83 871 # Programs: 1 565
on 8 channels

XMLTV 1 167 078 # Programs: 23 901
on 129 channels

Geo 59 925 # Locations: 19 946
TV-Anytime
Genres

4 859 # Genres: 685

We also observed that queries to the IMDb data set

were too slow for real-time query answering. Based on
studying the representative queries to be executed, and
the queries actually performed by customers, we
concluded that mainly a small popular subset of the
movies is frequently requested. Therefore, we chose to
perform a horizontal decomposition based on the
popularity of the movies. As a criterion, in accordance
with the desired application functionality, we used the
votes that were issued by the IMDb users. Based on a
stepwise restriction of the amount of movies via their
popularity (see first two columns in table 7), we
compared the amount of user queries still answerable
by this subset with the average query response time for
typical queries to the IMDb data set (third column),
and decided to split off movies that have 500 or more
votes from the main IMDb data set and put them in a
separate data set.

Since this IMDb subset only contains a fraction of
the total amount of movies, this data set is not always
sufficient to answer each user query. In that case, the
main IMDb data set, which we still keep available, is
consulted. Evidently, every time we need to query this
(full) IMDb data set, we will surrender any
performance gain made by employing the split off data
set. However, because this IMDb subset contains the
movies that are most requested (i.e. the popularity of
the movies), we are guaranteed that in most cases this
data set will suffice.

60

Note that these optimization steps lead to some
space overhead because of some overlap in the split
repositories (i.e. the connections). However this space
overhead is no significant drawback given the speed
increase. The initial database where all content resides
in one big semantic repository comprised 7,9 GB,
whereas the sum of the final decomposed set of
repositories takes up 8,4 GB.

Table 7. IMDb size and query execution times

Minimum
of Votes

Movies Query execution
time (ms)

0 976 174 54 198
1 261 749 14 832
10 141 438 8 137
25 82 996 4 322
100 33 386 1 805
500 11 500 678
1000 7 173 487

6. Reasoning Optimization

Next to the concept of linked data, another
important strength of the Semantic Web is its
possibility to reason over facts. As the reasoning
capabilities of RDF played a significant role in the
choice for using semantic technology, implementing
efficient reasoning into iFanzy was considered an
important step in its development, and a necessary one
to provide for a realistic performance. For example, the
following (custom) entailment rules represent the
transitivity of the partOf relationship:

Two strategies can be considered when applying

custom inferencing rules to an RDF data set. The first
one consists of storing the closure of these rules in the
data set, thus minimizing the run-time cost of
inferencing (not taking into account the performance
loss related to recalculating the closure after the
addition of new data or when the data set has been
updated). The second strategy consists of computing
such inference rules at run-time, by translating them
into the query and/or by using custom code.

To decide for which set we calculate the closure in
advance and which can we do on the fly, we need to
inspect the data closely. Let us first consider the

location hierarchy by means of the location
“shepperton studios” in the UK:

If we calculate the closure in advance, every
program P which is annotated with “shepperton
studios” will also be annotated with “shepperton”,
“England” and “UK”. If the user now requests all
programs annotated with “UK”, we also retrieve all
programs P. However, if the closure for the locations
hierarchy is not pre-calculated, every P will only be
annotated with “shepperton studios”, and thus, to
obtain the same result set, the inference-logic needs to
be included in the query, which in practice leads to a
huge WHERE clause explicitly enumerating all the
locations. In table 8 we see the difference in average
execution times for a location in “USA”. In the first
column a pre-calculated closure is used; in the second
column, all 8877 relevant locations are included in the
WHERE clause.

Table 8. Average execution times for queries with
pre-calculated closure vs. manual reasoning

(location)
Pre-calculated
closure (ms)

Query with manual
reasoning (ms)

2 375 140 818

Because the performance clearly suffers from the
extremely large WHERE clause, it is straightforward to
assume that in this case pre-calculating the closure (for
the location hierarchy) helps considerably.

In case of the genre hierarchy however, we see a
different story. When we compare the execution times
for the pre-calculated closure and the reasoning
included in the query (10 genres), we obtained the
following results (see table 9).

Table 9. Average execution times for queries with

pre-calculated closure vs. manual reasoning (genre)
Pre-calculated closure
(ms)

Query with manual
reasoning (ms)

3 352 3 375

As can be seen from table 9, the difference in
execution time between the two approaches is
negligible, as opposed to the execution times in table 8.
This can be explained by the difference in amount of
results returned from the reasoning process (i.e. 8877
locations in the first example vs. 10 genres in the
second example). We can thus conclude that explicitly

61

storing the pre-calculated closure in the data set is
worthwhile when the closure is relatively large.

7. Applying Available Tools and
Technologies

To further improve query execution times,
additional optimizations were applied. In particular,
existing tools and technologies were evaluated for their
usefulness: the use of relational databases, keyword
indexing, use of limited queries and improvement to
Sesame, the RDF storage and querying framework
used in iFanzy.

7.1. Use of Relational Databases to Store RDF
Data

Where the use of semantic data models offers great
possibilities for linking data, current software for
storing and manipulating semantic RDF data has its
problems when it comes to performance for data sets,
such as the one from real-world Web applications like
iFanzy. One way to recover some of this performance
loss is to store well-structured (strongly structured)
parts of such a large data set in a relational database. It
should be noted that many RDF data architectures like
Sesame already allow the use of a relational database
to store RDF data. However, such relational backends
are typically very generic, and cannot be configured to
store a given part of the RDF data in a specific way.
Also, they do not allow for specific optimization
techniques to improve query evaluation (e.g. indexing,
de-normalization).

Exploiting our knowledge of the strongly structured
IMDb data set, we therefore devised an optimized
relational database matching this specific structure.
The links to other RDF data (kept in an RDF data set)
were maintained by using resource URIs in the
relational database, and referring to these URIs in the
RDF stores (and vice versa).

Table 10. Comparison of execution times between
RDF data with and without relational database

optimization
Query IMDb

response
time (ms)

IMDb with relational
database optimization
(ms)

Query 1 2 157 117
Query 2 1 135 417
Query 3 11 265 3 252
Query 4 648 12
Query 5 14 344 3 495

As can be seen from table 10, the performance gain
that was achieved from this migration was significant.

7.2. Use of Keyword Indices

Indices in relational databases are data structures
that are constructed to decrease access time to certain
parts of the database. Analysis of the running iFanzy
application showed that the free text search (available
to the user in the form of a string search searching
through all properties of programs like title, synopsis,
person names, etc) is problematic when working with
large data sets, since Sesame’s pattern matching
facility has a performance linear to the size of the data
set. As Sesame does not provide indexing support for
terms and literals, we decided to build our own index
specifically to speed up full text search queries. We did
so using a relational database. For every program (both
broadcast and movie) resource, we extracted the literal
objects of the properties title, keywords, synopsis and
associated people like actors, directors, presenters,
etcetera. Subsequently, we parsed these literals (except
for the associated people) using white space as a
delimiter and filtered them using a stopword filter,
retaining only the useful keywords. Every resource and
keyword pair was then put in a relational database table
containing an index on the keywords. Every search
query issued by the user is first filtered using a
stopword filter, and then (together with synonyms
obtained from WordNet) sent to the MySQL database.
Consequently, the result set of this query is a list of
program URIs. The other constraints specified by the
user are sent to the relevant Sesame data sets, also
resulting in a list of resource URIs. The intersection of
these two lists is afterwards returned as the complete
result set.

To test the performance gain, we executed a series
of free text search queries over the IMDb data set. This
lead to a spectacular performance increase for free text
search queries, as can be seen in table 11.

Table 11. Average execution times for free text

search queries with and without index
Without index (ms) With index (ms)
57 726 731 3 193

7.3. Use of Limit for Optimization

Studying the representative queries in the
application, we saw that a major optimization could be
obtained by the use of limit and offset operators in
queries (to the relational databases and Sesame
repositories). Indeed, in most cases users do not inspect
the whole result set, but only the first few result pages

62

(in the case of iFanzy, a result page contains 20
results). By using a limit clause, the
repository/database will be searched for matches until
the number of results as specified in the limit clause is
found. This can have a significant influence on
performance, as the first X results may be found early
on in the query execution process, while the whole data
set needs to be inspected in order to obtain a complete
result set. If the user requests the next page of results
an offset is used: the first Y of matching results will be
discarded by the database and the next X number of
matching results will be returned. This results in re-
evaluating the query with a limit of X. Therefore,
subsequent result pages will be more expensive to
calculate. However, as in our experience users
typically do not navigate beyond the first couple of
results pages this in general does not reduce the overall
performance of our system. The test results below
illustrate the performance gain by including a limit
clause (with increasing limit operands) in a typical
iFanzy query executed on the IMDb data set:

Table 12. Average execution times for queries with

increasing limit operand
Limit Average execution time (ms)
10 595
100 628
1000 834
No limit 1 665

7.4. Sesame Versions

During the development of iFanzy, in cooperation
with the creators of Sesame, we started using Sesame 2
when it was still in its alpha stages. One of the reasons
the development of Sesame 2 was started were the
limitations of the internal representations of the RDF
model, which lead to limited query optimization
possibilities and therefore limited scalability. Sesame 2
was designed to eliminate these limitations.

However, using alpha software also had its
disadvantages. Besides frequent API changes that
forced us to recode database calls and connections, the
scalability of Sesame 2 proved problematic. While
Sesame 2 does not have the same limitations as
Sesame 1, Sesame 1 had been greatly optimized during
the many years since its introduction, while the query
optimization of Sesame 2 is still (onto this date) in its
early stages. Because of this, Sesame 2 generally
performed worse in practice than Sesame 1. The table
below shows the average execution times of several
typical iFanzy queries for the broadcast data set:

Table 13. Sesame 1 vs. Sesame 2
Query Sesame 1 (ms) Sesame 2 (ms)
Query 1 621 1 776
Query 2 1 599 2 256
Query 3 1 909 3 798

As can be seen from the results, performance

dropped significantly when using Sesame 2. Therefore,
we decided to revert most of the data sets (namely the
BBC Backstage and XMLTV data sets) back to
Sesame 1. On the other hand, Sesame 2 did have some
useful features (e.g. the context mechanism) that are
not available in Sesame 1; the data sets that were
populated depending on these features, most notably
context, were left in Sesame 2 (e.g. WordNet and the
different ontologies such as genres and location). We
do foresee a migration back to Sesame 2, when the
performance of Sesame 2 will exceed that of Sesame 1.

8. Conclusions and Future Work

One of the greatest opportunities in using
techniques from the Semantic Web in the engineering
of Web applications is the possibility to link data,
thereby increasing the total amount of knowledge that
was available in the separate sources. Building real-life
Web applications grounded on such huge sets of linked
data however is far from trivial with the currently
available technology and tools. In this article, we
discussed the engineering of such large-scale and real-
life Web applications, with the focus on practical
implementation strategies that make the applications
work with the available technology. In summary, with
all the data semantically linked and thus ready to be
accessed, for any RDF/OWL-based application it
remains a challenge to turn the (huge) single complete
conceptual knowledge structure into parts that can be
handled separately by the tools for data management
and access. For this aim, we studied both vertical and
horizontal decompositions of semantic data sets,
discussed reasoning, and considered optimizations
based on existing tools and technologies. The results
from our research that we illustrated here were
obtained in the context of representative data, and we
have shown and substantiated with practical
experiments that, using specific engineering steps and
practical measures to increase performance, such real-
life applications are feasible.

Where we have presented here a general recipe for
engineering large-scale Web applications that exploit
semantic linking while dealing with the inherent
implementation and engineering challenges, we
obviously will further develop and test the lessons
learned from this experience. First of all by extending

63

them where possible (e.g. we plan a performance
optimization step with parallel query evaluation and
automatic load-balancing strategies). Second, by
performing further experiments to expand the basis for
conclusions, which includes applying and evaluating
them in even more real-life scenarios. New
applications with different constraints may of course
give rise to new techniques that can be applied, and
thus lead to an extension of the spectrum of solutions
we can offer. As an example, we mention the use of
OWLIM23 [9] in iFanzy, as it promises to improve
query evaluation performance considerably. It will be
interesting to see how this backend performs in the
iFanzy setting, and what is needed in terms of
engineering to turn the general possibilities of OWLIM
into a concrete and specific advantage for this
application.

9. References

[1] D.J. Abadi, A. Marcus, S. Madden, K.J. Hollenbach,
“Scalable Semantic Web Data Management Using Vertical
Partitioning”, Proceedings of the 33rd International
Conference on Very Large Data Bases (DBLP), ACM,
Vienna, Austria, (2007), pp. 411-422.

[2] F. Abel, M. Frank, N. Henze, D. Krause, D. Plappert, P.
Siehndel, “GroupMe! – Where Semantic Web meets Web
2.0”, Proceedings of the 6th International Semantic Web
Conference, LNCS 4825, Springer, Busan, Korea, (2007),
pp. 871-878.

[3] L. Ardissono, C. Gena, P. Torasso, F. Bellifemine, A.
Chiarotto, A. Difino, B. Negro, “Architecture of a system for
the generation of personalized Electronic Program Guides”,
In Proceedings of the UM2001 Workshop on Personalization
in Future TV, Sonthofen, Germany, (2001).

[4] L. Aroyo, N. Stash, Y. Wang, P. Gorgels, L. Rutledge,
“CHIP Demonstrator: Semantics-Driven Recommendations
and Museum Tour Generation”, Proceedings of the 6th
International Semantic Web Conference, LNCS 4825,
Springer, Busan, Korea, (2007), pp. 879-886.

[5] P. Bellekens, L. Aroyo, G.J. Houben, A. Kaptein, K. van
der Sluijs, “Semantics-Based Framework for Personalized
Access to TV Content: The iFanzy Use Case”, Proceedings
of the 6th International Semantic Web Conference, LNCS
4825, Springer, Busan, Korea (2007), pp. 887-894.

[6] P. Bellekens, K. van der Sluijs, L. Aroyo, G.J. Houben,
“Engineering Semantic-Based Interactive Multi-device Web
Application”, Proceedings of the 7th International
Conference on Web Engineering (ICWE 2007), LCNS 4607,
Springer, Como, Italy, (2007), pp. 328-342.

23 http://www.ontotext.com/owlim/big/index.html

[7] Y. Blanco-Fernández, J.J. Pazos-Arias, A. Gil-Solla, M.
Ramos-Cabrer, M. López-Nores, “Bringing together content-
based methods, collaborative filtering and semantic inference
to improve personalized TV”, Proceedings of the 4th
European Conference on Interactive TV (EuroITV), Athens,
Greece, (2006), pp. 174-182.

[8] T. Heath, E. Motta, “Revyu.com: A Reviewing and
Rating Site for the Web of Data”, Proceedings of the 6th
International Semantic Web Conference, LNCS 4825,
Springer, Busan, Korea, (2007), pp. 895-902.

[9] A. Kiryakov, D. Ognyanov, D. Manov, “OWLIM – a
Pragmatic Semantic Repository for OWL”, Proceedings of
International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2005), WISE 2005, LNCS
3807, Springer-Verlag, New York City, USA (2005), pp.
182-192.

[10] D. O'Sullivan, B. Smyth, D.C. Wilson, K. Mcdonald, A.
Smeaton, “Improving the Quality of the Personalized
Electronic Program Guide”, User Modeling and User-
Adapted Interaction 14, 1, Kluwer Academic Publishers,
(2004), pp. 5-36.

[11] G. Ramakrishnan, J. Gehrke, Database Management
Systems (International Edition), McGraw-Hill Inc., ISBN 0-
07-246563-8 (1999).

[12] K. Rohloff, M. Dean, I. Emmons, D. Ryder, J. Sumner,
“An Evaluation of Triple-Store Technologies for Large Data
Stores”, In On the Move to Meaningful Internet Systems:
OTM 2007 Workshops, LNCS 4806, Springer, Vilamoura,
Portugal, (2007), pp. 1105-1114.

[13] J. Seidenberg, A. Rector, “Web ontology segmentation:
analysis, classification and use”, In Proceedings of the 15th
international Conference on World Wide Web (WWW
2006), ACM, Edinburgh, Scotland, (2006), pp. 13-22.

[14] M. van Setten, “Supporting People In Finding
Information: Hybrid Recommender Systems and Goal-Based
Structuring”, Telematica Instituut Fundamental Research
Series, No.016 (TI/FRS/016), Universal Press, (2005).

[15] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R.
Cyganiak, Z.G. Ives, “DBpedia: A Nucleus for a Web of
Open Data”, Proceedings of the 6th International Semantic
Web Conference, LNCS 4825, Springer, Busan, Korea,
(2007), pp. 722-735.

[16] H. Stuckenschmidt, M. Klein, “Structure-Based
Partitioning of Large Concept Hierarchies”, Proceedings of
the Third International Semantic Web Conference (ISWC
2004), LNCS 3298, Springer, Hiroshima, Japan, (2004), pp.
289-303.

64

