
Refactoring to Rich Internet Applications. A Model-Driven Approach

Gustavo Rossi1, Matias Urbieta1, Jeronimo Ginzburg 2, Damiano Distante3, Alejandra Garrido1

1LIFIA, Facultad de Informática, UNLP, La Plata, Argentina and Conicet
{gustavo, matias.urbieta, garrido}@lifia.info.unlp.edu.ar

2Departamento de Computación, Universidad de Buenos Aires, Argentina

jginzbur@dc.uba.ar

3RCOST – Research Centre on Software Technology
Department of Engineering, University of Sannio, Italy

distante@unisannio.it

Abstract

Rich Internet Applications (RIAs) combine the

simplicity of the hypertext paradigm with the flexibility
of desktop interfaces. The quick emergence of these
applications is driving a new (r)evolution in the Web
field. Building RIAs from scratch is often unfeasible
because companies do not want to loose their
investments in legacy Web software; additionally, most
users are still accustomed to the “old” Web
interaction style. In this paper we present an
evolutionary approach to transform conventional Web
software into RIAs; we show how to apply the well-
known refactoring concept to seamless introduce rich
interface functionality in a Web application. By
applying refactoring at the model level, we make the
transition more systematic and less prone to error. We
briefly introduce the problem with a simple example,
and then we describe two refactorings and present our
approach to specify these refactorings at the interface
design level.

1. Introduction

In the last years, we have witnessed a fast growth of
Web applications exhibiting sophisticated user
interface behaviors. These applications, known as
RIAs, have introduced the richness of desktop
interfaces into the peaceful world of the navigational
Web. Many frameworks have emerged to ease the
construction of this Web software, such as Ajax [6]
and Open Lazlo [15]. Once again, designers are facing

a nightmare: not only they have to accompany the
rapid pace of Web applications evolution; now, they
have to transform the “old” Web software into the
fashionable RIA interfaces. To make matters worse,
RIAs seem to be always in “beta” state: new interface
features are introduced, tested and then consolidated or
discarded.

In some cases, the added behaviors belong to new
design concerns with respect to the “legacy”
application, e.g., the addition of a chat window in a
mail program (see for example Gmail or Yahoo mail).
This improvements may also introduce crosscutting
behaviors (i.e., the new functionality affects the old
one). Though dealing with these concerns separately is
feasible [9], many other problems arise as shown later
in the paper.

Unfortunately, while there is still no common
agreement or measure on the impact of these changes
on final users, the transition to RIA has already started,
and designers, developers and maintainers need to face
it.

There are many alternatives to manage the
migration of a Web application to a RIA. For example,
the RUX-model approach [11] extracts existing data
and business logic from the Web application being
adapted, and provides a set of user interface
abstractions to specify the structure and behavior of the
new RIA. In [12], the authors propose a semi-
automatic approach that supports the migration of
classical multi-page Web applications to single-page
AJAX RIAs. Additionally, when the new application is
radically different from the old one, the two must co-
exist, as it is the case in Yahoo mail.

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.41

1

However, many well-known applications, such as
Amazon.com, eBay.com and CNN.com, have used a
radically different strategy. Instead of undergoing a
thorough migrating process yielding a complete RIA
version of them, they were subject to a smooth
evolutionary approach. They started changing limited
parts of their sites, introducing rich interface
functionalities in a step by step way, evaluating them
with customers and enriching the application
seamlessly. In some cases, the enrichments were
discarded after some time and the “old” style preferred.

As an example of this type of evolution, we show in
Figure 1.a and 1.b the “old” and new styles,
respectively, of a product list in Amazon.com. In
Figure 1.a, we can see a conventional vertical index
that scrolls with the page. Meanwhile, Figure 1.b
shows a horizontally scrollable index where mouse
hovering on one of the elements allows previewing
part of the target contents and even execute some
operations on the target product.

Figure 1.a: An index with a conventional
interface

We have formalized this evolutionary approach by

using the concept of Web Model Refactoring [7]. A
Web Model Refactoring (WMR) is a change applied
on the navigation or interface model of a Web
application, aimed at improving its external quality
while preserving the application’s behavior. This paper
focuses on WMRs over the application’s graphical
interface design that may transform a legacy Web
application into a RIA. We call them RIA refactorings.
RIA refactorings are described as compositions of RIA
interfaces [18], which in turn are formally specified
with Abstract Data Views (ADVs) [3]. As an example,
we present two RIA refactorings that introduce typical

RIA interaction styles by using oblivious composition
of ADVs.

Figure 1.b: A RIA version for the index in
Figure 1.a

We also show how a clear separation of structural

and behavioral concerns simplifies the specification of
RIA refactorings, which can be represented as
weavings of simpler interface behaviors. Additionally,
our style recognizes the volatile nature of the
evolutionary process, in which new features might be
either discarded or consolidated, and therefore aims at
making evolution non-intrusive by preventing, when
possible, model editions.

The main contributions of our approach are the
following:
• We present a novel model-based approach for

systematically transforming a Web application
into a RIA, by applying small design
improvements that we call RIA refactorings.

• We formalize the approach by showing how to
specify the resulting Web interfaces using ADVs.

• We show how to represent some meaningful
changes as weavings of oblivious interface
models, therefore simplifying the process of
evolution.

Regarding the first contribution, we extend our
refactoring catalogue (initially presented in [7]) to
include some new refactorings towards well-known
RIA patterns. The second contribution presents a
minor variant of the approach presented in [18]. The
third contribution is the major novelty of this paper,
since it shows how to use separation of concerns to
introduce RIA refactorings as weaving of oblivious
interface atoms.

The rest of the paper is structured as follows. In
Section 2 we present a short introduction to Web
model refactoring. In Section 3 we show how to apply
this concept to introduce RIA interface features; we
present our approach to specify and compose RIA
interfaces and show how to specify refactorings as

2

compositions; we also discuss some issues on mapping
interface refactorings to implementation. In Section 4
we discuss some related work. Finally, in Section 5 we
conclude the paper and present some further work we
are pursuing. For space reasons we concentrate on
interface transformations, and ignore back-end
changes, although Section 5 presents some comments
on these aspects.

2. Model-Based Refactoring in Web
Applications

Refactoring was originally defined in the context of
object-oriented systems to “factor out” new
abstractions by applying small changes to the source
code of an application that preserve its behavior [14].
These changes aim at improving the internal structure
of the code, making it more reusable and maintainable
[4]. Refactorings are usually motivated by “bad
smells” in design [4], i.e., heuristics that may indicate
poor design quality.

Model refactoring has also been proposed to
support the process of continuous improvement of an
application’s design [23], for example to introduce
design patterns [5] in the context of an agile approach
[10].

In the case of Web applications, we have defined
Web model refactorings as those changes that can be
applied to the navigation and interface models of a
Web application that preserve the application’s
behavior [7]. Web model refactorings differ from
conventional model refactoring in that they are
targeted at improving the external quality of the
application instead of the internal structure. Moreover,
conventional refactorings preserve the “observable
behavior” of the application [4], i.e., the mapping from
input to output values. In the case of WMRs, they
change “observable models” (i.e., models of the user
interaction with the application) so none of them
would be legal if they had to preserve “observable
behavior”. Instead, they preserve the behavior defined
in the underlying application or domain model, and
preserve the “availability” of this behavior, which
means that neither nodes with operations may become
disconnected nor their interfaces may be discarded [7].

The aim of WMRs is to apply slight changes to the
navigational or interface structure of the application in
order to make it easier to use (e.g., by improving the
interface look and feel, by reducing the navigation
steps needed to perform a task, etc.). They are also
triggered by “bad smells” in design, in this case, the
navigation and user interface design, and are usually

motivated by well-known Web patterns as those in
[19,21].

Navigation model refactorings may change, among
others: the contents of a node, the set of outgoing links
of a node, the navigation topology between a set of
nodes (guided tour, index, etc.), and the user
operations accessible from a node [7]. Meanwhile,
presentation model refactorings aim at improving the
look and feel of a page by changing the arrangement or
type of widgets, the number of sections in a page, the
interface effects, etc. We have described a number of
navigation and presentation model refactorings using a
simplified template comprising motivation, mechanics
and example [7]. Notice that the mechanics can be
described at different levels of abstraction,
independently of the underlying design method or
approach. We next present an example of a navigation
model refactoring.

Turn Information into Link

Motivation: During the process of completing a
business transaction, some Web pages may show
intermediate results or a succinct review of the
information gathered until a certain point of the
transaction. A common example occurs when checking
the status of the shopping cart during the process of
buying some products in an e-commerce site. Such
Web pages should provide the user with the chance to
review the choices and the information provided in
previous steps of the process (e.g., items in the
shopping cart, shipping and payment data, etc.) by
means of direct links to the pages showing details on
them.

Mechanics: In the navigation model of the Web
application, find the node corresponding to the
intermediate results page. Select the portion of
information about the target item that better
distinguishes it. Add a link from the node representing
the intermediate results towards the target node; the
anchor of the link would be the selected portion of
information.

Example: This refactoring may be used to add links
from names of products in a shopping cart, to the
pages showing detailed information about the
products.

The catalogue of refactorings we have identified

includes: Replace Widget (to make an interface object
look close to its intent), Split List (dividing the entries
into several pages), Add Information, etc. Their
rationales and descriptions can be read in [7,13].

3

3. Model-Based Refactoring to RIA

We can use the concept of Web model refactoring
to seamlessly introduce RIA features into a Web
application; we call these specific WMRs RIA
refactorings. RIA refactorings may be guided by RIA
patterns, and they usually arise when we discover
some “bad smell” in the application interaction style
that can be eliminated by introducing some richer
behavior.

Some RIA refactorings are pure interface
refactorings, but most of them combine
transformations of the navigation and interface models.
In fact, introducing RIA features often results in
changing both the interaction styles and the hypertext
structure; this is the case, for example, when the target
of a link is “transcluded” into the same page of the
link.

The main message of this paper is that a new
application supporting RIA features can be obtained
by:

a) Identifying the desirable changes by exploring
a catalogue of refactorings and detecting “bad
smells” in the corresponding application.

b) Applying the corresponding refactoring
mechanics to the involved ADVs.

c) Generating the new application from the
transformed ADVs.

In this section we will concentrate on items a) and

b) of the above list, by showing that RIA refactorings
can be obtained by oblivious composition of interface
objects and interaction styles, which are modeled as
belonging to different concerns. We introduce our
specification constructs in Section 3.1; we show the
basic composition style in Section 3.2 and its
application to refactoring in Section 3.3. To illustrate
our approach, we describe in Section 3.4 two RIA
refactorings which, when applied in sequence, yield
the transformation from Figure 1.a into Figure 1.b. We
discuss our contributions in Section 3.5 and provide
some comments on implementation in Section 3.6.

3.1. Modeling RIA Interfaces

In [18] we presented a systematic approach for
designing the interface of RIAs; the proposed approach
extends the OOHDM [17] interface design model by
allowing separation of independent or crosscutting
concerns in the interface specification. For each
concern we specify a set of Abstract Data Views
(ADVs) [3]. An ADV is a composite interface object
intended to specify a navigational object’s (the ADV’s

owner) look and feel. ADVs can be easily mapped,
either manually or automatically, into running interface
objects (e.g., XML/XSL specifications).

An ADV behavior can be exercised by traditional
method calls and also by interface or internally
generated events (such as “mouse click”). ADVs can
be composed or grouped in
generalization/specialization hierarchies therefore
allowing some level of reuse, when defining recurrent
interface object types (like buttons, maps, etc.). ADVs
promote separation of concerns because they do not
deal with data or business logic, which is usually
managed in the ADVs’ owners (i.e., nodes). However,
being full fledged objects, they can contain arbitrary
behaviors, including part of the business logic which in
some RIAs might be also allocated in the interface [2].

ADVs specify the interface aspects of its owner, i.e.
how we intend the owner to be perceived by the user.
ADVs may also relate with their owners not just to
indicate the owner’s look and feel but to trigger the
owners’ behaviors (which is the case with buttons,
menus, list of options, etc.). The relationships with
application objects are specified using configuration
diagrams, which are similar to UML class diagrams
emphasizing the messages that clients send to servers.
ADVs are also used to indicate how interaction will
proceed and which interface effects take place as the
result of user interaction. These behavioral aspects,
which are specified using ADV-charts [2] (a kind of
State charts), are of great importance for RIA
modeling. ADVcharts generalize Statecharts to deal
with aspects of design specific to interactive systems,
such as using pointing devices to associate events with
particular ADVs or focus of control. Besides, different
from Statecharts, which only provide behavioural
(state) nesting, ADV-charts also support structural
nesting by allowing ADVs inside states and vice versa.
This greater communication power does not imply a
loose of computational power as it has been shown
elsewhere [3] that an ADV-chart can be translated into
an equivalent Statechart.

An ADV chart comprises a set of transitions which
rules interfaces transformations. Each transitions
specifies an event that must be handled, a precondition
that must be satisfied for transforming the user
interface once the event is triggered, and a
postcondition that specifies the resultant interface state.
Both pre and post conditions are Boolean expressions.
The Boolean expressions may be formed by objects
methods and Boolean operations: and “&”, or “|”, and
negation operation; it is also possible to use short-
circuit operations. The examples that follow use the
function Focus(), which indicates the position of the
cursor. They also use a pseudo-variable called perCont

4

(referring to the perception context) to indicate the
objects that are perceivable; these objects are “added”
or “subtracted” from the perception context.

In Figure 2 we show the ADV corresponding to a
video user interface (UI) component, whose real
interface is shown at the right. This ADV is composed
of inner ADVs that may belong to primitive types (like
the buttons or the scrollbar) or other user-defined
ADVs (like the playList). The progress bar ADV is
specified outside the VideoADV because of its
complexity and to facilitate its reuse. The position of
inner ADVs in the diagram gives a cue to graphic
designers and may also be used to improve automatic
layout generation.

A simplified ADV-chart specifying the behavior of
the Video UI component is presented in Figure 3. In

this chart we can see how the interface reacts when the
Play, Pause or PlayList buttons are pressed. These
behaviors are specified at the right of Figure 3
indicating, for each state transition, which event causes
the transition, under which preconditions it can occur,
and which are the side effects, expressed as post-
conditions. Transition labeled 1 occurs when the Play
button is clicked; the Play button becomes disabled
and the stop button becomes enabled. On the other
hand, transition 3 makes the Video Title and the Play
List perceivable minimizing the video. Finally,
transitions 2 and 4 invert transitions 1 and 3
respectively.

VideoADV

Video: StreamingMedia PlayList: PlayListADV

VideoTitle: String

Play: Button Pause: Button

Volume: ScrollBar

PlayListButton:Button ShareButton: Button

PB: ProgressBar

Set (1..n, Vertical)

VideoTitle: String

Figure 2: Video ADV

5 6

Playing

VideoTitle

off

1
2

PlayList

1:
Event: MouseClicked
Pre-Cond: Focus(Play)
Post-Cond: owner.isPlaying()
2:
Event: MouseClicked
Pre-Cond: Focus(Pause)
Post-Cond: ! owner.isPlaying()
3:
Event: MouseClicked
Pre-Cond: Focus(PlayListButton)
Post-Cond: perCont=perCont+PlayList+VideoTitle
4:
Event: MouseClicked
Pre-Cond: (Focus(PlayListButton) || Focus(Video))
Post-Cond: perCont=perCont-PlayList-VideoTitle
5: Event: Display
Pre-Cond:
Post-Cond: perCont=perCont+VideoADV
6:Event: Hide
Pre-Cond:
Post-Cond: perCont=perCont-VideoADV

PlayListButton

Video

MinimizedMaximized

3

4

ProgressBar

VideoADV

VolumeADV ShareButton

Video

Pause
Paused

Play

Figure 3: ADV-Chart for Video ADV

5

IntegrationFor
Target
ADD
RelativeTo
Position

 RelatedVideo
 CDADV

 Video: VideoADV
 ProductDetails

 Below

CDADV

ProductDetails:
ProductDetailsADV

Cover:
Picture

ListenToSamples: Anchor

Offer: SpecialOffersADV

Figure 4: Integrating the Video into the CD ADV

3.2 Composing RIA Interface Designs

As mentioned before, most complex RIAs deal with
different application concerns. In a previous paper [8],
we presented an approach to modularize interface
concerns in order to make compositions seamless and
unobtrusive. User interfaces belonging to different
concerns are designed separately and, when possible,
obliviously from each other; then they are composed
using an integration specification. This solution
facilitates the application’s evolution by allowing each
concern to be developed regardless of the others.

As an example, we show at the left of Figure 4, a
fragment of the ADV corresponding to a CD page and
the integration specification to seamlessly compose the
Video ADV (shown in Figure 2) with it. At the right of
Figure 4 we show the resulting interface. This way of
specification helps to deal with unstable or volatile
functionality (e.g., when the video might be later
removed from the page), because the integration is
specified separately from the other ADVs, which
remain independent from each other. The integration
specification indicates the position in which the new
ADV (VideoADV) will be inserted.

3.3 Refactorings as Compositions

RIA refactorings introduce new interaction facilities
on existing interface objects and usually might
introduce new interface objects as shown in Figure 1.b.
Instead of changing the original interface specification,

we apply a RIA refactoring by composing the new
ADV (which represents the item details hovering in
Figure 1.b) using the approach presented in Section
3.2,. The composition might involve “just” changing
the behavior of the original ADV, as it is necessary
when transforming a typical hypertext index into a
scrollable one, or it might involve more complex
compositions, as we will show next.

Specifying a RIA refactoring as a composition has
several advantages:

• First, it allows reversing the refactoring as the

original model was not edited;
• Second, it allows defining composition

templates (as we show in Section 3.4);
• Finally, we can have libraries of interaction

styles defined as ADVs (with their
corresponding ADV-charts) to apply the
refactorings.

3.4 RIA Refactorings

RIA refactorings are applied to concrete
applications, by transforming specific interface
elements into others, adding new interaction facilities,
etc. However, it is possible to express the mechanics of
refactorings at a higher-level, by using what we call
“ADV templates”.

An ADV template comprises the roles played by the
different objects and the involved behaviors, i.e.,
interface objects and their behaviors, and interaction

6

styles. The template provides hooks to apply the
refactorings by replacing static references at: ADVs,
ADVCharts and Integration Specifications. The hooks
may be interface components such as Pictures,
TextFields, or more complex components; in our
interface model, these elements are also ADVs.

Parameters Types are introduced by “<>”and hooks
become template’s parameters. Therefore, the changes
proposed in the mechanics of RIA refactorings are
realized by instantiating the corresponding parameters
as defined in the ADV template.

We next present two RIA refactorings: Make Index
Scrollable and Add Link Target Anticipation. They can
be considered as specializations of the Web model
refactorings Introduce Scrolling and Anticipate Target
presented in a previous work [7]. In this paper we
precisely describe the mechanics of these refactorings
by composition of ADVs.

I) Make Index Scrollable

Motivation: A Web page presenting a long linearly
ordered index of items in an e-commerce site, may
require the user to repeatedly scroll the whole page. In
order to improve navigability and highlight some index
items, it is possible to make the index horizontal and
scrollable. A pair of buttons (Left and Right) are
introduced, which trigger a shift between items to the
corresponding left or right.

In this way, instead of using the browser scroll-bar,
we introduce two application scroll controls that help
to reduce the space devoted to the index. Alternatively,
the scroll could be vertical or circular, i.e., in a
carrousel style. The latter might be preferable for a
small number of elements because we can keep them
all visible.

Mechanics: The refactoring starts by selecting the
target user interface component (StaticIndex) that will
be enriched. Following with our running example,
Figure 5 shows the interface for a “Recommendations”
page, which contains an ADV for the products’ index.
In turn, the index ADV contains a set of Product
ADVs, each comprising all the information of a
product. We do not show the ADV-Chart for this
interface since it does not exhibit behaviors beyond
navigation, i.e., it only reacts to the MouseClick event
by triggering a link.

Recommendations ADV

NewRealeases: Anchor CommingSoon: Anchor

StaticIndex: Array(0..n)

Title : string

Product ADV

ListPrice : string

Cover : bitmap
Reviews: ReviewsADV

Figure 5: Index ADV

The second step is defining the behavior of a
generic scrollable index component, whose ADV and
ADV-Chart are (partially) specified in Figure 6.

The third step consists of composing the
Recommendations ADV with the new ADV for index
entries in the way described in Section 3.2. For this
purpose we define the following integration
specification:

IntegrationFor Make Index Scrollable
Target Recommendations
Add Index: IndexScrollable
RelativeTo StaticIndex
Position Replace

This integration specification can be used in order
to replace the traditional index of Figure 5 with the
new index. Here we indicate that we wish to substitute
the original index with the scrollable one. By changing
the integration specification we can obtain other
results. For example, if we use another generic
template like Carrousel (instead of stopping at the last
index item it start again with the index’s first item) we
could obtain a different index look and feel.

Notice that the changes produced by the refactoring
do not remove any operations nor data from the
interface, therefore preserving the applications’
behavior.

7

1
Event: MouseClicked
Pre-Cond: Focus (Left)
Post-Cond: ShiftLeft(),

4,5)
Event: ShiftLeft
Pre-Cond: OFFSET>0;
((V i) (0<= i < 5 && Items.get(i).getModel() ==
owner.Items.get(OFFSET+i))
Post-Cond:
(V i) (0<= i < 5)
Items.get(i).getModel()==owner.Items.get(OFFS
ET +i - 1))

Event: ShiftRight
Pre-Cond: OFFSET<owner.Items.size()-5
((V i) (0<= i < 5 && Items.get(i).getModel() ==
owner.Items.get(i+OFFSET))
Post-Cond:
(V i) (0<= i < 5)
Items.get(i).getModel()==owner.Items.get(OFFS
ET +i + 1))

3.
Event: MouseClicked
Pre-Cond:
Focus (Items[i])
Post-Cond:
Items[i].AnchorSelected()

2
Event: MouseClicked
Pre-Cond: Focus (Left)
Post-Cond: ShiftLeft(),

4On

Off

5

3

ScrollableIndex

ScrollableIndex ADV

Left: Button

Items: array (0..5, horizontal)

Right:
ButtonItem: Adv

ADV

Left Right

On
On

1

4

Figure 6: Scrollable Index template definition

II) Add Link Target Anticipation

Motivation: Some UIs present a long list of
elements to the user, for example as the result of a
search operation. Choosing among the elements may
imply navigating to the target item, exploring the
desired features and eventually backtracking to the list.
A better solution is to provide a summary of the target
item (including some possible actions), for example by
means of the hovering details shown in Figure 1.b.

Mechanics: The first step of this refactoring
involves making the corresponding interface object
sensible to the “mouseover” event. Then, the second
step is to associate to the mouse over event the action
of displaying some interface objects corresponding to
the link target (which might contain operations as
shown in Figure 1.b). These objects disappear from the
perception space when the mouse is over another
sensible area or clicked on another interface object.

As an example, we show in Figure 7 the template
for introducing hover details into a generic ADV
implementing the Anchor interface. We also show in
Figure 8, the Preview ADV, which defines the
interface of the anticipated target. Using the integration
specification described below, we intend decorating
the Product ADV, by putting it inside a Hover Details
ADV template. This change will also impact on the

Recommendation interface, by incorporating a
summary of the target of the index items as hover
details.

IntegrationFor HoverDetails
Target Product ADV
ReplaceWith HoverDetails<Product ADV, Preview>

HoverDetails

Off On

Details
1

2

1:
Event: MouseOn
Pre-Cond: Focus(Self)
Post-Cond: PerCont=PerCont+
 Details
2:
Event: MouseOn
Pre-Cond: Not Focus(Self)
Post-Cond: PerCont=PerCont-
 Details

AnAnchor

HoverDetails <V, T> ADV

AnAnchor: T

Details: V

3.
Event: MouseClicked
Pre-Cond: Focus(Self)
Post-Cond:
AnAnchor.AnchorSelected()

Figure 7: Introducing Hover Details

Preview ADV

Title: String

Reviews: ReviewsADV
ListPrice: String

OfferPrice: String

iOwnIt:checkBox

notInterested:checkBox

fixThis:anchor

Figure 8: ADV for the Target Anticipation

Figure 9 shows the composed ADV-Chart, which
represents the user interface of Figure 1.b. The Details
ADV and Events 1’ and 2’ are incorporated as the
result of the previous transformation. The rest of the
event’s behaviors remains equals to the original.

Note that this refactoring is not removing
operations from the interface, but just may be reducing
the number of steps necessary to reach them.

8

Left Right

Items

I
On

Off
4

5

3

0. Event: MouseClicked.... // Same events
...
...
...
1':
Event: MouseOn
Pre-Cond: Focus(Items[i].Item)
Post-Cond: PerCont = PerCont + Items[i].Item.Details
2':
Event: MouseOn
Pre-Cond: Not Focus(Item[i].Item)
Post-Cond: PerCont = PerCont - Items[i].Item.Details

ScrollableIndex <HoverDetails <ProductLight, Preview>>

Details

On

Off
21

AnAnchor
Ite

m

Figure 9: Resulting Composed ADV

3.5 Discussion

The novel contributions discussed in the previous
section can be summarized as:

• An evolutionary improvement process based on
refactorings;

• A compositional approach for dealing with
these improvements in a model-driven way.

The first contribution is an adaptation of well-

known software engineering practices to deal with
evolution (in fact we borrowed the term refactoring
from agile approaches).

Regarding the second one, a reader might argue that
it strongly depends on a rather proprietary notation
(ADVs) and as such difficult to be universally adopted.
It is true that for completely profiting from the
approach it is necessary to use this formalism (as with
other model-driven approaches) and that existing Web
applications might have been designed with others
approaches. However, our view goes beyond this
particular notation; specifically it is possible to
subscribe to these ideas by “just” relying on the
transformational approach at a lower level of
abstraction, i.e., dealing with HTML/XML code. To
show the feasibility of applying refactorings as XML
transformations we devote the following sub-section to

briefly show how to map the previous ideas to an
implementation setting.

3.6 Mapping to Running Applications

As said above, even though our main concern is to
focus on design issues, we briefly show in this section
that our approach is suitable for obtaining running
RIAs.

ADVs can be mapped in a straightforward way onto
concrete interface implementations, which support
event-driven actions such as HTML/JavaScript
(AJAX), GWT, XUL, etc. To make the discussion
concrete, we show how to map our abstract
components into HTML/JavaScript ones. Different
heuristics can be defined for other languages or tools.

We suppose that the source ADVs have been
already mapped onto HTML documents and that their
behavior has been coded using JavaScript.

The first step is to code each component of the
template, namely ADVs and ADV-Charts, using
HTML/Javascript inside an XSL document with a
template style, which allows referencing the
parameters for instantiating the refactoring. At
instantiation time, the XSL engine replaces the
parameters’ references with the corresponding
instantiation values.

Next, as we have discussed in [18], integration
specifications can be mapped into XSL
Transformations [20]. These transformations are
capable of inserting, deleting or replacing fragments of
code belonging to the user interface and implemented
with XML-compliant languages like HTML, JSP, JSF,
XSL, etc. Using XSL transformations, rich behavior
can be incorporated in the interface by inserting blocks
of JavaScript functions.

Once we have specified the ADV templates, or we
have got the templates from a catalogue, the
refactoring process can be automatized; templates are
instantiated for each refactoring declaration. The
instantiation mainly gets a template, replaces its hooks
with real components, and finally merges the resultant
block of code with the target source code of the
refactoring declaration.

In some cases, existing interface behavior is
overridden due to some interface enhancement, such as
intercepting a mouse click for popping up a banner.
We profit from a JavaScript facility that allows to
redefine functions at runtime and to wrap one function
into another [1].

Next we are going to refactor a simple index (like
presented at figure 1.a) into a new scrollable index. In
Figure 10, we show the original code block
corresponding to the index in Figure 1.a, developed

9

using Struts2. We present it in a simplified way to
concentrate on the changes. In Figure 11, meanwhile,
we show the specification of the scrollable index
template of Figure 1.b.

Figure 10: Original code of Index HTML

The template implementation comprises three main
generic components: Scrollable Index ADV XSL
document, an item view ADV implementation adapter,
and the integration specification mapped to a XSL
document.

In order to enrich the conventional index in Figure
1.a, we will use the scrollable index’s toolkit [24] as
part of template implementation which, after its
instantiation, will give as a result a RIA index such as
the one in Figure 1.b.

The first template component is the index item
ADV adapter (named ItemViewAdapter and coded
into ItemViewAdapter.xsl file); its implementation
just contains few lines that render a ProductADV by
taking the ADV implementation from the target code;
it then applies low level changes for a correct fit. In
this example, the adapter transforms a HTML table-
based index item to an unordered list item (using UL
and IL HTML Tags), which is required by the
scrollable index artifact. This low level code
adaptation may not be needed and it just can be an
idempotent function.

Figure 11: Scrollable Index ADV’s template

The Next step in the implementation of the template
is the coding of Scrollable index ADV skeleton using
XSL. The template introduces all the code related to
Scrollable index and inserts within the Item artifact
adapter (using xsl:call-template routine) which will
render the index item.

 This new structure is coded into a file called
scrollable.xsl. For a matter of space, part of the code
was replaced by XML comments.

The last template component is the integration
specification; this implementation is realized, again,
using XSL transformations corresponding to the
integration specification. The XSL document specifies,
using a XPATH expression, that the widget component
with id equals to ‘index’ in the original Index code,
will be replaced by the Scrollable Index ADV template
wrapping the item view. This specification is shown at
Figure 12.

Figure 12: Template’s integration
implementation

Figure 13 shows the final interface and its runtime

composing components: Scrollable index and new item
interface.

In order to reuse this refactoring in other context,
we need to specify a new integration specification that
points out to the new target index in the `match´
attribute of the XSL `template´ tag, and a new
ItemViewAdapter for adapting the source code of
original index items.

In Figure 12, the XSL engine has a pipeline with
two integration specifications, for Scrollable Index and
Hover Detail refactorings. Each specification sets
corresponding ADV parameters. Taking as input the
index code presented in Figure 10, the XSL engine
processes the Scrollable index’s integration
specification (Figure 12), applying over its input the
changes proposed by the refactoring (coded in Figure
11). Then it applies the second refactoring by
introducing a preview popup into the first
transformation result, which ends the refactoring
process.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="…">
<xsl:template name="scrollableIndex" >
<!-- Right Button component definition -->
<table>
<s:iterator value="index" status="status">
 <xsl:call-template name="ItemViewAdapter" />
</s:iterator>
</table>
<!-- Left Button component definition -->
<!-- Carrousel initialization -->
</xsl:template>
</xsl:stylesheet>

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:include href="scrollable.xsl"/>
 <xsl:include
href="ItemViewAdapter.xsl"/>
 <xsl:template match="//*[@id='index']">
 <xsl:call-template
name="scrollableIndex">
 </xsl:call-template>
 </xsl:template>
</xsl:stylesheet>

<html>…
<body>…
<table id=”index”>
<s:iterator value="index" status="status"><tr>
 <td><s:property value="top.name" /></td>
 <td><s:property value="top.price" /></td>
 <td><s:property value="top.imageName"/></td>
</tr></s:iterator>
</table>
<body></html>

10

Figure 13 : Resulting woven interface

Figure 14: Refactoring process

4. Related Work and Discussion

Refactoring is a rich research subject both in
conventional software and also in Web applications
[16]. Our view is original as we consider refactoring of
navigation and interface models to improve usability;
in the case of RIA, our aim is to enhance the
interaction facilities by small changes that make
evolution seamless.

In [11] the authors present a method for engineering
the adaptation of model-based Web 1.0 applications to
Web 2.0 UI. The first phase of this model extracts the
relevant information from the adapted Web model, to
automatically build an initial version of an abstract
interface common to all RIA devices. In the next phase,
by means of transformation rules, it provides a draft
version of the concrete interface for a given set of RIA-
capable devices. Finally it automatically provides the
final interface based on the RIA technology chosen by
the modeler. The RUX-Tool [11] implements the
RUXModel method.

In [12] meanwhile, a navigational model of web
applications is extracted and then candidate user
interface components are identified to be migrated to a
single-page AJAX interface. They propose a migration
process, consisting of five steps: retrieving pages,
navigational path extraction, user interface component

model identification, single-page user interface model
definition, and target model transformation. This
approach is implemented by a tool called RETJAX.

These two approaches imply a complete
reengineering of the whole legacy application, while in
this paper we propose to apply incremental
refactorings at the model-level to transform
conventional Web software into RIA. Another original
aspect of our approach is that we do not conceive
transformations to incorporate new features as editions
on a model but rather as compositions with orthogonal
features. In this way, not only we can reuse the ADV
templates in different applications but we do not
pollute the original code making the transformation
easily undoable if the new feature will not be finally
incorporated.

5. Concluding Remarks and Further Work

We have presented a model-based approach to
transform conventional Web applications into RIA in a
step by step way. The approach is based on the well-
known concept of refactoring applied to Web interface
models. We have shown elsewhere [13] that, by
applying simple refactorings, it is possible to improve
the external quality of a Web application. In particular,
in this paper we showed how a single refactoring
allows introducing a richer interaction style in a Web
application. More complex transformations can be
obtained by composing refactorings, e.g. to introduce
RIA patterns such as those in [22].

While the refactoring process involves recording
and reusing design experience, it also requires human
intervention, for example to choose a specific
refactoring from a catalogue. However, refactorings
can be applied at the modeling level by systematically
changing the original model into the refactored one. In
this paper, we have shown that by representing the
mechanics of refactorings using templates, and using a
compositional approach, we can ease the refactoring
process. To achieve this objective, we have used our
approach for representing RIA interfaces [18], and the
compositional approach presented in [8]. We have
shown with very simple examples that this process is
feasible, though it still requires further research. We
are currently working on the following issues:
• Extending the catalogue to include more RIA

refactorings.
• Studying relationships among similar refactorings

(e.g. Index to Scrollable or to Carrousel) to
improve catalogue organization and specification.

• Improving tool support for ADV representation
and composition.

11

• Automatizing the transformation from woven
ADVs into running code.

• Analyze the quality of design and implementation
artifacts when refactorings are applied in
sequence.

• Extending the approach to incorporate more
complex navigational refactorings, particularly
those which require back-end changes.

• We are working on the adaptation of a more
standard notation (such as UML models) for the
whole process.

We consider that the current trend to migrate Web
applications into RIA deserves further attention.
Particularly, the seamless evolutionary style that we
are proposing is appropriate to face this situation, since
it guarantees that introducing new facilities may be
easily de-activated.

10. References

[1] Aspect Oriented Programming and Javascript. In
http://www.dotvoid.com view.php?id=43 (2007)

[2] Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi,
G.: Conceptual modeling and code generation for rich
internet applications. ICWE 2006: 353-360.

[3] Cowan, D. Pereira de Lucena, C.: Abstract Data Views:
An Interface Specification Concept to Enhance Design for
Reuse. IEEE Trans. Software Eng. 21(3): 229-243 (1995).

[4] Fowler, M. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 2000.

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: “Design
Patterns. Elements of reusable object-oriented software” ,
Addison Wesley (1995).

[6] Garrett, J, “Ajax: A new approach to web applications”.
Adaptive path, 2005.
http://www.adaptivepath.com/publications/essays/archives/0
00385.php.

[7] Garrido, A., Rossi, G., Distante, D.: Model Refactoring
in Web Applications. In Proceedings of the 9th International
Symposium on Web Site Evolution (WSE 2007: Oct. 05-06,
2007; Paris, France). Los Alamitos, CA: IEEE Press, 2007.

[8] Ginzburg, J., Rossi, G., Urbieta, M., Distante, D.:
Transparent Interface Composition in Web Applications. In
Proceedings of the 7th International Conference on Web
Engineering (ICWE2007: July 16-20, 2007; Como, Italy),
pp. 152-166 (2007).

[9] Gordillo, S., Rossi, G. Moreira, A., Araujo, A.,Vairetti,
C., Urbieta, M.: Modeling and Composing Navigational
Concerns in Web Applications. Requirements and Design
Issues. LA-WEB 2006: 25-31.

[10] Kerievsky, J. Refactoring to Patterns. Addison-Wesley,
2005.

[11] Linaje, M., Preciado, J., Sanchez-Figueroa, F.:
"Engineering Rich Internet Application User Interfaces over
Legacy Web Models", Internet Computing, IEEE, Volume:
11, Issue: 6, pp. 53-59, Nov.-Dec. 2007.

[12] Mesbah, A., Van Deursen, A. "Migrating Multi-page
Web Applications to Single-page AJAX Interfaces," csmr,
pp. 181-190, 11th European Conference on Software
Maintenance and Reengineering (CSMR'07), 2007.

[13] Olsina, L., Rossi, G., Garrido, A., Distante, D., Canfora,
G. “Incremental Quality Improvement in Web Applications
Using Web Model Refactoring”. 1st Int. Workshop on
Web Usability and Accessibility. Nancy, France, December
2007., Springer Verlag, LNCS.

[14] Opdyke, W. Refactoring Object-Oriented Frameworks.
Ph.D.Thesis, University of Illinois at Urbana-Champaign,
1992.

[15] Openlaszlo, http://www.openlaszlo.org/

[16] Ricca, F., Tonella, P., Baxter, I.: Restructuring Web
Applications via Transformation Rules. SCAM 2001: pp.
150-160, Firenze, Italy, 2001.

[17] Schwabe, D., Rossi, G. “An object-oriented approach to
web-based application design”. Theory and Practice of
Object Systems (TAPOS), Special Issue on the Internet, v.
4#4, October, 1998, 207-225.

[18] Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.:
“Designing the Interface of Rich Internet Applications” Proc.
of LA-WEB 07, Santiago, Chile, IEEE Press, 2007.

[19] Van Duyne, D., Landay, J., Hong, J. The Design of
Sites. Addison-Wesley, 2003.

[20] XSL. The Extensible Stylesheet Language Family. In
http://www.w3.org/Style/XSL/, 2008

[21] http://www.welie.com/patterns/, Welie

[22] http://developer.yahoo.com/ypatterns/, Yahoo! Patterns

[23] Zhang, J., Lin, Y., Gray, J. Generic and Domain-
Specific Model Refactoring using a Model Transformation
Engine. In Model-driven Software Development, (S.
Beydeda, M. Book, and V. Gruhn, eds.), Springer, Chapter 9,
pp. 199-218, 2005.

[24] UI-Prototype: http://www.prototype-ui.com/

12

